均衡技术--数字工程师要掌握的射频知识连载(六)

2016-10-04来源: ednchina关键字:均衡技术  数字工程师  射频知识
前面我们介绍了预加重或者去加重技术对于克服传输通道损耗、改善高速数字信号接收端信号质量的作用,但是当信号速率进一步提高或者传输距离更长时,仅仅在发送端已不能充分补偿传输通道带来的损耗,这时就需要在接收端同时使用均衡技术来进一步改善信号质量。

所谓均衡,是在数字信号的接收端进行的一种补偿高频损耗的技术。常见的信号均衡技术有3种:CTLE(continuous time linear equalization),FFE(feed forward equalization)和DFE(decision feedback equalization)。

CTLE是在接收端提供一个高通滤波器,这个高通滤波器可以对信号里的主要高频分量进行放大,这点和发送端的预加重技术带来的效果是类似的。下图是USB3.0总线在接收端使用的CTLE均衡器的频响曲线的例子。

下图反映出的是一个5Gbps的信号经过35英寸的FR4板材传输后的眼图,以及经过CTLE均衡后对眼图的改善。  

关键字:均衡技术  数字工程师  射频知识

编辑:什么鱼 引用地址:http://news.eeworld.com.cn/Test_and_measurement/article_2016100417520.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:抖动和相位噪声--数字工程师要掌握的射频知识连载(七)
下一篇:预加重技术--数字工程师要掌握的射频知识连载(五)

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

电池组管理之电池均衡技术介绍

 写到电池均衡,基本上已经触及了BMS的核心区域,首先需要明白几点问题。   1.电池均衡是有限度的,效果需要用一定的参数进行评价。   2.电池均衡在HEV和EV里面,要求有很大的区别。   3.电池均衡的效果必须与成本和额外的能量消耗进行博弈和妥协。   而且其实有必要搞清楚为什么要进行均衡,从几篇论文中,可以得到一些明确的阐述:   SAE_Battery Charge Equalization–State of the Art and Future Trends   SAE_A Review of Cell Equalization Methods for Lithium Ion and Lithium
发表于 2012-09-12
电池组管理之电池均衡技术介绍

最新的高速信号虚拟探测和均衡技术

1. 引言在高速serdes系统中, PCB的长距离传输线、连接器、过孔的阻抗不连续等因素对信号造成很大衰耗,比如6.25Gb/s的信号在FR4上走25英寸或者更远之后的眼图已经无法张开,为了解决这种衰耗问题,往往有两种方法,一种是在发射端使用预加重技术,一种是在接收端使用均衡技术。由于在SERDES接收芯片内部集成了均衡器,以补偿信号的过大衰减,但是测试时,直接测量接收端的信号基本没有意义,因为这根本无法代表接收信号的真实性能。在示波器内部集成滤波器,让客户订制滤波功能来仿真接收芯片的均衡特性,是目前高速测试的解决方案之一。中兴通讯EDA高速实验室作为公司的高速测试平台,解决过E1业务板、以太网口、千兆光口、高速互联系统等众多
发表于 2012-04-12
最新的高速信号虚拟探测和均衡技术

电池均衡技术的概念和应用

和检测手段的不完善,而不是锂离子本身的化学属性变化。棱柱形锂电池(LiIon prismatic cell)在生产时需要更强的机械压力,电池之间更容易产生差异。此外,锂离子聚合物电池也会因为采用新的工艺而出现电池之间的差异。 采用电池均衡处理技术可解决SOC和C/E失配问题,从而改进串联锂电池包的性能。通过在初始调节过程中对电池进行均衡处理可以矫正电池失配问题,此后只需在充电过程中进行均衡即可,而C/E失配则必须在充、放电过程都进行均衡。尽管对于某个电池厂商而言其产品缺陷率可能很低,但为了避免出现电池使用寿命 过短的问题,我们仍然有必要提供进一步的质量保证。 电池均衡的定义 工作电压为6V 或以上的便携式设备采用串联电池
发表于 2011-03-28

Broadcom推出业界首款全部基于DSP及突破性均衡技术的10Gb以太网串行收发器

新的10Gb以太网物理层器件采用先进的DSP均衡器技术, 可在包括多模和单模在内的所有光纤基础设施上实现10Gb以太网连接   北京,2006年12月26日-全球有线和无线通信半导体市场的领导者Broadcom(博通)公司(Nasdaq:BRCM)今天宣布,推出新的10Gb以太网物理层器件BCM 8706 10GbE (SFP+至XAUI) 收发器,该器件采用了Broadcom久经考验的数字信号处理(DSP)技术。这是业界第一款全部基于DSP技术的10Gb以太网串行收发器,该器件为从1Gb向10Gb以太网升级提供了一条途径,可帮助客户保护在已有多模和单模光纤基础设施上的投资。由于采用了独特的高速DSP技术,因此与同类模拟
发表于 2006-12-26

信号带宽?--数字工程师需要掌握的射频知识连载(一)

    要进行数字信号的分析,首要的原因是真实传输的高速数字信号已经远远不是教科书里理想的0/1电平。真实的数字信号传输过程中一定会有一些(甚至很严重的)失真和变形。如下图所示红色是我们期望的理想的数字信号波形,而黄色的则可能是真实的信号波形,可以看到信号上已经由于震荡(通常由于阻抗匹配不好)已经发生了较大变形。其实在高速的情况下这已经是比较好的信号波形了,很多时候信号的波形会比这个更加恶劣。       要进行数字信号的研究,首先要得到真实的数字信号波形,这就涉及到使用的测量仪器问题。观察电信号的波形的最好工具是示波器,当信号速率比较高时,一般所需要的示波器带宽也
发表于 2016-10-04
信号带宽?--数字工程师需要掌握的射频知识连载(一)

对数字信号的影响--数字工程师要掌握的射频知识连载(二)

  通过前面的研究我们知道数字信号的频谱是分布很宽的,其最高的频率分量范围主要取决于信号的上升时间而不仅仅是数据速率。当这样高带宽的数字信号在传输时,所面临的第一个挑战就是传输通道的影响。    真正的传输通道如PCB、电缆、背板、连接器等的带宽都是有限的,这就会把原始信号里的高频成分销弱或完全滤掉,高频成分丢失后在波形上的表现就是信号的边沿变缓、信号上出现过冲或者震荡等。     另外,根据法拉第定律,变化的信号跳变会在导体内产生涡流以抵消电流的变化。电流的变化速率越快(对数字信号来说相当于信号的上升或下降时间越短),导体内的涡流越强烈。当数据速率
发表于 2016-10-04
对数字信号的影响--数字工程师要掌握的射频知识连载(二)

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved