datasheet

解析射频及微波校准源测量方法

2016-10-08来源: elecfans关键字:射频  微波校准源  测量方法
  在开发中进行测量,可用以评估是否达成目标规范的性能,同时在测试制程中的产品时将面临各种挑战,包括确认使用的方法是否可提供较为确定的所需数值范围、缺乏某项参数的追溯,以及确认可作为交叉检查的替代技术,以验证选择的方法。使用者同时须有可迅速取得的设备、运用合适的方法,以进行例行性的重新校准工作。本文将简述仪器设计架构,并概述所运用的测量方法。

  利用具备外部校准探头仪器进行测试

  信号源频率范围介于10Hz~4GHz之间,振幅则介于+24~-130dBm间,专门用于产生绝大多数常见RF及微波校准应用所需的信号,并具有一定的准确度,而无须在使用时以其他设备进行监控或特性化(Characterize)输出,如使用功率分离器与功率传感器测量输出振幅、使用调变分析仪监控调变电平等。

  为协助输出信号直接传送至负载或待测单元(UUT)输入,并将因缆线与互连而产生的效能低落情形降至最低,因此新型仪器配备外部校准探头(Leveling Head),信号会自主机中产生,并馈入包含电平探测器与衰减器电路的外部校准探头。

  许多校准应用大多须要获得高纯度的信号,且常须要使用外部滤波器,而外部校准探头的设计为藉由输出信号路径内设置合适滤波器的方法,可降低谐波与假性含量。此外,此项设计亦具有内部类比调变功能,调频(FM)以最高300kHz的速率于频率合成器内产生,而调幅(AM)则以最高220kHz的频率在输出放大与水平电路(Leveling Circuit)内产生。此外,测量需求包括水平振幅电平(RF功率)、输出电压驻波比(VSWR)及调变。

  功率传感器无法支持较低不确定度测量

  RF电平(Level)测量值为参考频率的绝对值,接着再测量相对于此参考频率数值的频率响应,即平坦度,而关于100kHz参考点的测量,可采用交流电(AC)电压测量标准测量在已知50Ω终端上形成的均方根(RMS)电压,再计算相应的功率电平。RF功率计与功率传感器用于高频测量,此为常用的技术,若能使用含修正资料且正确校准的功率传感器,将可进行不确定度极低的追溯测量工作。

  然而,此项技术仍无法提供够低、约-50dBm左右的不确定度。测量工作可利用现代频谱分析仪接近线性的振幅响应,以较低的电平进行,而此类仪器的线性绝大多数均取决于用于数字化中频(IF)信号的交流对直流(AC-DC)转换器,以便在数字领域中进行后续处理。测量的分析仪线性误差通常可大幅低于在测试中预估的不确定度,即在70dB的范围内小于0.02dB,频谱分析仪依功率传感器测量的UUT输出,在- 47dBm标准化,且不须更改分析仪的设定,即可在50dB范围内,最低在-97dB进行测量,之后,频谱分析仪即在-97dBm标准化,以于-130dBm进行测量。

  信号源输入阻抗可预估失配程度

  知道信号源,即信号源端匹配的输入阻抗不仅对确认规范而言十分重要,亦可让使用者预估其应用中失配的不确定度。VSWR或输入回流损失测量技术通常用于连接「Leveling」准位来源的被动式装置,将有窒碍难行之处并产生错误的结果,且进行此工作时,难以有实验室能为产生器以符合标准的方式进行信号源端匹配(Source Match)测量,且鲜少有制造商会在自身的文献中记载方法。如图1所示,此架构选择的方法为输入回流损失电桥。

  

  图1 信号源VSWR测量架构

  信号发生器从UUT输出频率,以约莫10Hz的少许固定频率偏移插入信号。UUT输出与反射信号将以10Hz的比率加减,此信号以设为「零跨距(Zero Span)」模式的频谱分析仪侦测,并使用指针测量最大与最小振幅差异及时间,参考电平亦以UUT取代开路与短路测量,并计算电压反射系数与VSWR。

  AM与FM的精准度目标为高于0.1%,且失真小于0.05%(-66dB),然而传统测量方式却难以达成此目标,但可使用配备测量解调器的频谱分析仪进行测量,解调器采用数字信号处理,以数字化IF资料的方式,从取得的资料获取所需的信号特性(图2)。

  

  图2 频谱分析仪信号处理

  为何须为AM与FM测量调变率、调变深度/ 偏移及失真,如进行失真测量时,即可设定解调器显示信号的音频频谱,且使用总谐波失真(THD)测量算法判定所需带宽中出现的总谐波含量。先不论FM偏移测量的贝索零值(Bessel Null)技术,分析频谱分析仪与测量解调器中的固有误差来源后发现,应取得极为准确的调变测量值,否则技术人员也无法找出可提供够低的追溯不确定度的方法或其他实验室,以完整评估潜在的性能。

关键字:射频  微波校准源  测量方法

编辑:什么鱼 引用地址:http://news.eeworld.com.cn/Test_and_measurement/article_2016100817598.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:先进测试平台进行ADSL芯片关键参数测试
下一篇:毫米波线性调频测距实验系统

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

射频模块天线端的ESD该如何设计?

摘要:硬件工程师在设计产品时,ESD抗扰度是一个重要的考虑指标。静电对于大部分电子产品来说都存在危害,射频模块对静电更加敏感。那么针对射频模块类产品,ESD抗扰度应当如何考虑和设计呢? 关于ESD抗扰度等级,不同产品不同行业对应着不同的标准,国际电工委员会所颁布的IEC61000-4-2标准适合于各种电气与电子设备做电磁兼容性的测试。在进行产品设计前需要先规定好产品的ESD抗扰度的等级,要么根据标准来定义要么根据产品实际需要来定义。这样才可以有依据的进行产品设计及测试。   关于ESD抗扰度等级的实现方法,主要有外壳设计、硬件设计及PCB布局、元器件选型、软件修复等。其中在硬件设计方面,一个
发表于 2019-07-18
射频模块天线端的ESD该如何设计?

罗德与施瓦茨扩展其射频和微波信号发生器频率范围至67GHz

模拟微波信号发生器R&S®SMA100B现在可以提供高达67 GHz的微波信号,具有业界领先的射频性能。在超过频率范围的应用中,它甚至可以提供高达72 GHz的信号。R&S SMA100B产生的信号具有最低的单边带相位噪声和最高的输出功率,同时具有极低的谐波。 随着新的频率选件的发布,R&S®SMA100B现在覆盖了31.8 GHz、40 GHz、50 GHz和67 GHz的频率范围。模拟微波信号发生器支持航空航天与国防、无线通信、半导体等相关应用领域。R&S®SMA100B是未来所有微波应用领域的一项可靠投资,也是表征微波组件、器件和系统的理想仪器。40 GHz仪器覆盖所有主要雷达波段
发表于 2019-07-15
罗德与施瓦茨扩展其射频和微波信号发生器频率范围至67GHz

射频前端将如何进一步迎接5G的到来

2019年6月6日,工业和信息化部正式向中国移动、中国联通、中国电信、中国广电发放5G商用牌照,标志着我国正式步入5G时代。5G的发展,将会给智能家居、车互联、卫星和军事,天上地上都会带来一场前所未有的变革。作为承载5G的射频前端,技术上的挑战更加严峻。射频工程师,只有了解其面临的5G挑战,才能明确5G产品研发重点和方向,从而,跟上5G科技发展的步伐。你准备好了迎接这些挑战没?具体有哪些挑战呢?一起来看一下吧。首先,5G频段带来更多的射频器件和产品形态正如我们所知道的,各个国家和地区使用的5G频段是不同的,但任何通信协议使用却都要符合频段规范,这就要求5G手机需要支持更多的频段(包括n41,n77和n78等)。这个是在做加法
发表于 2019-07-15
射频前端将如何进一步迎接5G的到来

5G带动砷化镓用量翻倍,射频元件厂2020年将受惠

研调机构集邦旗下拓墣产业研究院报告指出,由于现行射频前端元件制造商依手机通信元件功能需求,逐渐以砷化镓(GaAs)晶圆作为元件的制造材料,加上5G布建逐步展开,射频元件使用量较4G时代倍增,预期GaAs射频元件市场将自2020年起进入新一波成长期。拓墣指出,由于射频前端元件特性是耐高电压、耐高温及高频等,在4G与5G时代有高度需求,传统如HBT和CMOS的硅(Si)元件已无法满足,厂商逐渐转向GaAs化合物半导体。拓墣强调,GaAs化合物半导体的电子迁移率较Si快速,且具有抗干扰、低噪声与耐高电压等特性,因此特别适合应用于无线通信中的高频传输领域。由于4G时代的手机通信频率使用范围已进展至1.8~2.7GHz,对传统3G的Si射频
发表于 2019-07-09

5G代GaAs成长推手台射频代工厂可望受惠摆脱营收衰退

5G通讯将带动砷化镓(GaAs)的市场明显成长。根据集邦科技旗下拓墣产业研究院报告指出,现行射频前端元件制造商依手机通讯元件的功能需求,逐渐以砷化镓晶圆作为元件的制造材料,加上5G布建逐步展开,射频元件使用量较4G时代倍增,预料将带动砷化镓射频元件市场于2020年起进入新一波成长期,而台湾射频代工制造业者如稳懋,宏捷科,环宇等也可望搭上此波浪潮,逐渐从营收衰退困境脱身。目前4G时代的手机通讯频率使用范围已进展至1.8〜2.7GHz的,对传统3G的硅射频前端元件已不敷使用,加上5G通讯市场正步入高速成长期,其使用频段也将更广泛(包含3〜5GHz的,20〜30GHz的),因此无论是4G或5G通讯应用,现行射频元件预计将逐渐被砷化镓取代
发表于 2019-07-09

射频前端产业链深度解读

终端设备的无线通信模块主要分为天线、射频前端模块(RF FEM)、射频收发模块、以及基带信号处理器四部分。其中射频前端是无线连接的核心,是在天线和射频收发模块间实现信号发送和接收的基础零件。 射频前端芯片主要是实现信号在不同频率下的收发,包括射频功率放大器(PA)、射频低噪声放大器(LNA)、射频开关、滤波器、双工器等。目前射频前端芯片主要应用于手机和通讯模块市场、WiFi路由器市场和通讯基站市场等。  射频前端芯片市场规模主要受移动终端需求的驱动。近年来,随着移动终端功能的逐渐完善,手机、平板电脑等移动终端的出货量持续上升,而射频前端的市场规模也随之上升。根据 Gartner 统计,包含手机
发表于 2019-07-08
射频前端产业链深度解读

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved