如何选择合适自己示波器

2019-10-18来源: eefocus关键字:示波器  电子技术  电子测试仪器

示波器自从问世以来,它一直是最重要、最常用的电子测试仪器之一。由于电子技术的发展,示波器的能力在不断提升,其性能与价格也五花八门,市场参差不齐。示波器看似简单,但如何选择,也存在许多问题。本文根据多年的经验,从几个方面告知您在选择示波器时应注意的问题:


一、了解您需要测试的信号

您要知道用示波器观察什么?您要捕捉并观察的信号其典型性能是什么?您的信号是否有复杂的特性?您的信号是重复信号还是单次信号?您要测量的信号过渡过程的带宽,或者上升时间是多大?您打算用何种信号特性来触发短脉冲、脉冲宽度、窄脉冲等?您打算同时显示多少信号?您对测试信号作何种处理?


二、选择示波器的核心技术差异:模拟(DRT)、数字(DSO)、还是数模兼合(DPO)

传统的观点认为模拟示波器具有熟悉的控制面板,价格低廉,因而总觉得模拟示波器 “ 使用方便 ” 。但是随着 A/D 转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力和实际上不受限制的测量功能,数字示波器已独领风骚。但是数字示波器显示具有三维的缺陷、处理连续性数据慢等缺点,需要具有数模兼合技术的示波器,例 DPO 数字荧光示波器。


三、确定测试信号带宽

带宽一般定义为正弦波输入信号幅度衰减到 -3dB 时的频率,即幅度的70.7% 。带宽决定示波器对信号的基本测量能力。如果没有足够的带宽,示波器将无法测量高频信号,幅度将出现失真,边缘将会消失,细节数据将被丢失;如果没有足够的带宽,得到的信号所有特性,包含响铃和振鸣等都毫无意义。


一个决定您所需要的示波器带宽有效经验—— “5倍经验准则”:将您要测量的信号最高频率分量乘以5,使测量结果获得高于2%的精度。


在某些应用场合,您不知道你的感兴趣的信号带宽,但是您知道它的最快上升时间,这时频率响应用下面的公式来计算关联带宽和仪器的上升时间: Bw=0.35/信号的最快上升时间。


数字示波器带宽有两种类型:重复(或等效时间)带宽和实时(或单次)带宽。重复带宽只适用于重复的信号,显示来自于多次信号采集期间的采样。实时带宽是示波器的单次采样中所能捕捉的最高频率,且当捕捉的事件不是经常出现或瞬变信号时就更为重要,实时带宽与采样速率紧密联系。


带宽越高越好,但是更高的带宽往往意味着更高的价格,因此应按照预算来选择您要观察的信号频率成分。


四、A/D转换器的采样速率(或采样速度)

单位为每秒采样次数( S/s ),指数字示波器对信号采样的频率。示波器的采样速率越快,所显示的波形的分辨率和清晰度就高,重要信息和事件丢失的概率就越小。

如果需要观测较长时间范围内的慢变信号或低频信号,最小采样速率就发挥了作用,为了在显示的波形记录中保持固定的波形数,需要调整水平控制旋钮,而所显示的采样速率也将随着水平调节旋钮的变化而变化。


如何计算采样速率?计算方法取决于所测量的波形类型,以及示波器所采用的信号重建方式,例正弦插入法,矢量插入法等。为了准确地再现信号并避免混淆,奈奎斯定理规定:信号的采样速率必须不小于其最高频率成分的两倍。然而,这个定理的前提是基于无限长时间和周期连续的信号。由于示波器不可能提供无限时间的记录长度,而且从定义上看,低频干扰是不连续的,也不是周期的,所以采用两倍于最高频率成分的采样速率通常是不够的。


实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法,即波形重建。一些示波器会为操作者提供以下选择:测量正弦信号的正弦插值法,以及测量矩形波、脉冲和其他信号类型的线性插值法。


有一个比较采样速率和信号带宽时很有用的经验法则:如果您正在观察的示波器有内插(通过筛选以便在取样点间重新生成),则(采样速率 / 信号带宽)的比值至少应为 4∶1 ;无正弦内插时,则应采取 10∶1 的比值。


五、屏幕刷新率也称为波形更新速度

所有的示波器都会闪烁,示波器每秒钟以特定的次数捕获信号,在这些测量点之间将不再进行测量,这就是波形捕获速率,也称屏幕刷新率,表示为波形数每秒( wfms/s )。一定要区分波形捕获速率与A/D采样速率的区别。采样速率表示示波器在一个波形或周期内A/D采样输入信号的频率 ; 波形捕获速率则是指示波器采集波形的速度。波形捕获速率取决于示波器的类型和性能级别,且有着很大的变化范围。高波形捕获速率的示波器将会提供更多的重要信号特性,并能极大地增加示波器快速捕获瞬时的异常情况,如抖动、矮脉冲、低频干扰和瞬时误差的概率。


一般来讲,模拟示波器由于电路简单,其屏幕刷新率较高,而数字存储示波器( DSO )使用串行处理结构每秒钟可以捕获 10 到 5000 个波形。为了改变数字示波器屏幕刷新率低的问题,数字荧光示波器采用并行处理结构,可以提供更高的波形捕获速率,有的高达每秒数百万个波形,大大提高了捕获间歇和难以捕捉事件的可能性,并能让您更快地发现信号存在的问题。


六、选用适当的存储深度,也称记录长度

存储深度是示波器所能存储的采样点多少的量度。如果您需要不间断的捕捉一个脉冲串,则要求示波器有足够的存储器以便捕捉整个事件。将所要捕捉的时间长度除以精确重现信号所须的采样速率,可以计算出所要求的存储深度。

存储深度与采样速率密切相关。您所需要的存储深度取决于要测量的总时间跨度和所要求的时间分辨率。


现代的示波器允许用户选择记录长度,以便对一些操作中的细节进行优化。分析一个十分稳定的正弦信号,只需要 500 点的记录长度;但如果要解析一个复杂的数字数据流,则需要有一百万个点或更多点的记录长度。


在正确位置上捕捉信号的有效触发,通常可以减小示波器实际需要的存储量。


七、根据需要选择不同的触发功能

示波器的触发能使信号在正确的位置点同步水平扫描,使信号特性清晰。触发控制按钮可以稳定重复的波形并捕获单次波形。


大多数用示波器的用户只采用边沿触发方式,如果拥有其它触发能力在某些应用上是非常有用的,特别是对新设计产品的故障查寻,先进的触发方式可将所关心的事件分离出来,找出您关心的非正常问题,从而最有效地利用采样速率和存储深度。


现今有很多示波器,具有先进的触发能力。触发能力主要围绕三个方面:①有关垂直方向的幅度,例瞬态尖峰触发、过脉冲或短脉冲触发等;②有关水平方向的与时间有关的触发,例脉冲宽度、窄脉冲、建立/保持时间等设定时间宽度的触发形式;③扩展和常规触发功能的组合能力,例对视频信号或其它难以捕捉的信号,通过时间和幅度组合设置触发条件进行触发。触发能力的提高,可以大提高测试过程的灵活性,并简化工作,尤其现今的示波器对数据总线的触发能力大大提高,例CAN,I2C等。


八、通道能力,包括通道数量和通道对地的悬浮能力和通道之间的隔离能力

您需要的通道数取决于您的应用,对于通常的经济型故障查寻应用,需要的是双通道示波器,然而要求观察若干个模拟信号的相互关系,将需要一台 4 通道示波器,许多工作于模拟与数字两种信号的系统工程师可以选择混合信号示波器(MSO),它将逻辑分析仪的通道计数及触发能力与示波器的较高分辨率综合到具有时间相关显示的单一仪器中。如果您测量三相电,可控硅等有源器件或线路,两端之间没有绝对的零点,即所谓的浮地信号,这时候从操作安全和精度出发,应选用隔离通道示波器;如果比较多通道的时序和相移,应选用两通道以上示波器,这时通道之间的隔离更显重要。


九、对异常现象的捕获

三个主要因素影响着示波器显示日常测试与调试中所遇到的未知和复杂信号的能力:屏幕刷新速率、波形捕获方式和触发能力。波形捕获模式有:采样模式、峰值检测模式、高分辨率模式、包络模式、平均值模式等。屏幕刷新速率指给您关于示波器对信号和控制的变化反应快慢,使用峰值检测有助于在较慢的信号中捕捉快速信号的峰值。


十、示波器的性能和指标

示波器的指标有很多:如垂直灵敏度、扫描速度、垂直精度、时间基准、垂直分辨率等等。示波器的性能取决品牌的质量,关键在于质量、稳定性和校准服务等。


十一、分析功能有助于您事半功倍

数字示波器的最大优点是它们能得到的数据进行测量,且按一下按钮即可实现各种分析功能。虽然可利用的功能因厂家和型号而异,但它们一般包括频率、上升时间、脉冲宽度等测量,有些示波器还提供很多分析模块,例FFT、功率分析、高级数学运算等超常功能。


十二、相应配套的附件和探头

容易忘记的一点是,当装上探头时,它就成为整个测试电路的一部分了,结果探头将造成电阻性、电容性和电感性负载,使示波器呈现出与被测对象

[1] [2]
关键字:示波器  电子技术  电子测试仪器 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/Test_and_measurement/ic477534.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:详解:如何用混合信号示波器探测模拟和数字信号
下一篇:示波器的种类及基本组成详细介绍

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

示波器测试测量中取样方式的选择
在测试测量中有许多种取样方法,今天电工学习网小编将为大家介绍示波器不同的选择。默认模式保留每个采集间隔中的第一个取样点。峰值检测模式使用了两个连续捕获间隔中包含的所有取样的最高和最低点。该模式仅可用于实时、非内插的取样,并且在捕获高频率的毛刺方面非常有用。高分辨率模式计算每个采集间隔所有取样值的平均值。该模式也只能用于实时、非内插取样。高分辨率模式提供了较高分辨率、较低带宽的波形。包络模式在所有采集中查找最高和最低记录点。包络模式对每个单独的采集使用峰值检测。平均模式计算用户指定的采集数的每个记录点的平均值。平均模式对每个单独的采集都使用取样模式。使用平均模式可以减少随机噪声。采样模式垂直分辨率垂直标度是80 V/格。10格
发表于 2020-03-09
示波器测试测量中取样方式的选择
示波器触发的基本原理
示波器是电气工程师的基础仪器,但我经常发现有些工程师不能有效地使用其触发功能。触发常被认为非常复杂,现在存在这样一种趋势,即如果有任何问题,直接到实验室去求助专家来帮助设置触发。本文的目的在于帮助工程师了解触发的基本原理以及有效使用触发的策略。什么是触发?任何示波器的存储器都是有限的,因此所有示波器都必须使用触发。触发是示波器应该发现的用户感兴趣的事件。换句话说,它是用户想要在波形中寻找的东西。触发可以是一个事件(即波形中的问题),但不是所有的触发都是事件。触发实例包括边沿触发、毛刺信号触发和数字码型触发。示波器必须使用触发的原因在于其存储器的容量有限。例如,Agilent 90000 系列示波器具有 20 亿采样的存储器深度
发表于 2020-03-09
示波器销售人员不会告诉你的秘密
专家:“如何判断示波器的测量结果是否靠谱呢?”信友:“难道示波器还会说谎吗,我将被测信号与探头连接完成之后,直接按下Autosetup键就会有波形出来。接下来只要把波形打多一点,打少一点,调大一点,调小一点,就可以直接观测了。”专家:“其实示波器没有想像的那么完美,屏幕显示的波形可不一定代表实际信号的真实情况啊!”信友:“原来如此!那么我有一个问题,在确认波形显示可以代表真实的信号之后,示波器还能帮我干点啥?” 专家:“兄弟,现代智能示波器的功能可远不止是看波形哦!”
发表于 2020-03-09
示波器销售人员不会告诉你的秘密
电工仪器仪表示波器地线容易短路的原因和安全注意事项
不要随便用单个示波器探头去测量电路中的非接地元件的两端电压,那样极易造成地线短路。地线容易短路的原因是:1)示波器探头的地线夹与示波器电源线的地在示波器内部已经连在一起了。2)大多数测量仪器(除了稳压电源)的电源线地,信号线地在仪器内部都是连在一起的。3)不同仪器的地也通过电源插排连在一起了。示波器探头安全使用的几条原则:1) 两个示波器通道的探头地,从安全考虑,最好只接一个(反正在示波器内部它们是相连的),并且接在地电平上。2) 如果确需使用两个地线夹(例如测量高频信号),则一定要保证两个地线夹连的都是地电平。3) 如果要用示波器探头测量浮地信号,最好是用两探头信号相减的办法。示波器探头不接地可能导致电路错误甚至是短路。
发表于 2020-03-09
示波器的垂直分辨率对测量的影响
一般数字示波器采用的都是8位ADC,对任何一个波形值都是用256个0和1来重组。假设示波器垂直方向满量程为8格,对应量化级数256。在垂直档位为500mV/div的情况下,垂直精度为(500mV*8)/256=15.625 mV。测量同一个信号,在垂直档位为50mV/div的情况下,即(50mV*8)/256=1.5625 mV,垂直精度就达到了1.5625 mV。图 测量精度 在实际测量中,由于测量波形的幅值不一样,故垂直档位设置也会不一样,但是为了尽量使测量准确,可进行以下操作: 使测试信号幅值尽量占到屏幕6div左右。例如一个峰峰值为7Vpp的正弦波,垂直档位应设为1V/div,而不是2V/div或5V
发表于 2020-03-09
示波器的垂直分辨率对测量的影响
RTO示波器模板测试功能在捕获偶发错误中的应用
异常信号是有还是没有,这一直是个问题。但我们的产品遇到偶发性的故障现象时,我们会做出大胆地假设,怀疑这怀疑那,接下来,我们恨不得示波器能“一个不漏地”连续采集半个小时,1个小时的信号。但遗憾的是,示波器从来就干不了这个活。示波器每采集一屏幕的信号就会“停顿”一段时间,然后再进行下一次。采采停停。 我们怎么指望示波器能“抓”到异常信号? 本文介绍的方法应是值得借鉴。在日常的电路测试工作中,由于各种原因,所造成的电路中偶发错误的捕获及测量通常是一个难点。其难点通常在于:• 偶发错误,出现的概率低,示波器由于存在一定的死区时间,无法捕获到异常信号;• 偶发错误出现的时间和幅度不确定,不清楚如何设置触发条件进行捕获;• 偶发
发表于 2020-03-09
RTO示波器模板测试功能在捕获偶发错误中的应用
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved