基于频谱分析仪的平均功率测量讨论分析

2019-12-04来源: elecfans关键字:频谱分析仪  平均功率  不确定度

平均是减小测量系统固有不确定度的一个最常用的方法。进行多次测量,对其结果求平均,可以减小测量随机性的影响。如今大部分测量仪器都具有平均功能,仪器通常不是直接输出含有噪声的结果,而是测量上百次,计算出平均值,把平均值作为结果输出。但是下文会描述:频谱分析仪中的功率平均有时会导致不正确的结果。


本文的试验会引用两家不同厂商的频谱分析仪的功率测量结果。但是本文的结论对任何使用“后处理平均方法”的频谱分析仪都适用。


第一个错误观点:对均方根功率求平均,可以得出跨度为零的轨迹(或其一部分)的平均功率。为了更好的驳斥这个观点,有必要先了解一下平均的数学定义。如公式1所示:MAVE是某个试验N次测量的平均值,其中Mi是每一次测量的结果。


在这个例子中,仪器A和仪器B的结果,可接受的差异在一定范围之内(比如±1dB),所有的测试都是在频率跨度为零ZS(zero span)的情况下测试的,这时频谱分析仪会在一个固定的频点,测量这个频点的功率随时间变化的关系。这里并不是刻意选择ZS模式的,其实平均问题在传统的频域扫描测试中也存在。

在两个例子中,都采用ZS模式测量零信道功率比ACPR(adjacent-channel-power-raTIo)。对于现代采用数字中频滤波器的频谱分析仪而言,这种测量功能是必备的,可以在偏离载波中心不同频偏的频率点多次测量功率,而不需要重新调谐频谱分析仪的中心频率。


图1显示的是ZS模式下,一个GSM时隙脉冲信号。其中蓝色的曲线是脉冲的功率包络。这里测量的是“射频输出调制谱”,也就是所谓的ACPR测量。

从这条曲线可以得到很多结果,如最大峰值功率、最小功率和平均功率,寻找最大/最小功率在概念上非常直观,仪器直接从轨迹中搜索出最大/最小点即可。


计算平均功率最简单的方法(当然也是正确的)就是对红色界限范围内的测量点求平均。如公式2所示,其中N是红色界限内的点数,Pith point是第i个点的功率。

问题是,仪器厂商对于功率平均的方法是不一致的。其中一个厂家是按照公式2来计算的;但是另一个厂商先把功率转换成电压,对电压求平均,再把平均电压换算成平均功率,如公式3所示。

由于两种仪器输出的平均值的差别不大,所以很难看出其中一种仪器用的是公式2,而另一种用的是公式3。有必要从两种仪器分别取出多组轨迹,进行平均直到找到吻合之处。在图1的例子中,采用“真正的均方根”平均功率算法(后面简称RMS功率)的仪器,和采用“电压平均”功率的仪器之间的结果相差 0.25dB(前者比后者高0.25dB)。这点差异可能会被简单的认为是仪器之间的个体差异。尽管0.25dB看起来很小,但是当要求的精度仅仅是±1dB时,0.25dB就显得有点大了。如果是测量整个脉冲的平均功率的话(调制谱测量的是脉冲50%到90%时间内的功率),这个差异会扩大到约 1dB。这个值就会接近我们所要求的仪器之间误差容限了。


“电压平均”功率代表的是“先平均再平方(mean-squared)”的功率(如公式3),而“均方功率”则是“先平方再平均(mean- square)”功率。由统计学的知识我们可以得出:两者的差就是幅度变化。也就是说,两种仪器输出功率的差值就是幅度变化。而且“均方功率”永远大于 “电压平均功率”(RMS power 》 average voltage power)。


第二个关于功率平均的错误观点就是:对功率求平均总是在线形单位(瓦特)下进行的。实际上很多仪器常常采用对数平均。同样采用上面那个例子,假设测试中噪声影响很大,为了去除噪声,决定测量多组轨迹,对轨迹求平均。GSM标准规定,ORFS调制谱的测量需要对200个脉冲求平均。公式4是对应的计算公式,其中PTrace i是用公式2或公式3计算出的单条轨迹的平均值。

当然对这个功率的线性表达结果(单位为瓦特)求平均是合理的,但是很多仪器提供了对数平均功能。这个例子中,以dBm为单位的功率进行了平均。例如,求 1和 3dBm的平均值:如果用线性平均结果为:(1.25mW 2mW)/2=1.62mW= 2.11dBm;但是对数平均的结果为:(1dBm 3dBm)/2=2dBm。因此对数平均的结果会引入0.11dB的误差。


需要注意的是,对数平均引起的误差的大小和信号是否重复有关。尽管对数平均方法是错误的,但是对于重复信号,对数平均和线性平均的结果一致。需要注意,这里说的重复信号指的是每一个周期,其功率对时间关系是完全一样的。


必须要牢记:非重复信号会引入误差,如果不注意,经常会导致实验室的测量数据和实用环境中的误差很大。因为在实验室中,我们通常采用很好的“任意波形发生器ARB(arbitrary waveform generator)”作为信号源,这种源通常是把一个波形不断的重复播放。但是实用环境中的信号肯定不是重复性的。然而,只要不同周期之间的功率差别不是很大,对数平均和线性平均的误差也不会很大。


另一个需要注意的是,轨迹平均时,每次测得的各条轨迹之间对应的“点和点”的平均算法问题。同样的,信号的重复性会影响对数平均引起的误差。在这里,轨迹上的每一个点和其他轨迹上的对应点一起求平均,得出的结果作为这个点的平均值。


同样的,轨迹上的每一个点和其他轨迹上的对应点(同一个x轴)一起求平均,得出一条平均的轨迹线。这里x轴对应的是时间,当然对于频率也适用。和前面一样,这里可以采用线性平均或对数平均。这样对x轴上每一个点都做完平均之后就可以得到一条平均轨迹了。如果信号是重复的,线性平均和对数平均的结果相同,因为x轴上每一个点的功率在各次测量的轨迹上是相同的。


当被测信号不是重复的结果如何呢?图2就是对20个不同的EDGE信号,分别采用对数平均和线性平均后的结果。当然两条曲线会有差异,而且可以看出对数平均的结果比线性的小。图3显示的是两条曲线每一个点的差异。注意,正如我们所料,训练序列(译者注:用于同步和信道估计的部分,是完全重复的)部分的轨迹完全重合。

关键字:频谱分析仪  平均功率  不确定度 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/Test_and_measurement/ic481928.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:功率分析仪的录波功能测试电机上电瞬间的启动脉冲分析
下一篇:PXIe-5668R-26.5GHz宽带信号分析仪的优点

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

虚拟信号频谱分析仪的设计
以及滤波处理。  1  系统整体设计方案  本设计的虚拟频谱分析仪即可以对虚拟信号发生器所产生的信号进行频谱分析。也可以对通过信号调理器,基于PCI总线的DAQ卡组成的采集系统所采集到的外部信号进行频谱分析。其中,在对外部信号进行频谱分析时,外界被测信号首先传送到信号调理电路,且由信号调理电路对它进行放大、滤波、隔离等处理后,再经数据采集卡进行A/D转换,以将模拟信号转换为数字信号,然后由软件对被测试信号进行频谱分析和处理,最后得到测试结果,并按要求将它们显示或储存起来。  本文所设计的虚拟频谱分析仪的前面板图如图1所示。这一种虚拟频谱分析仪能够提供一个高精度的频谱分析功能,并且可以同时观察输入信号的频域显示。但该虚拟频谱分析仪
发表于 2019-12-03
虚拟信号频谱分析仪的设计
一文了解频谱分析仪的原理
频谱分析仪工作原理目前信号的分析主要从时域、频域和调制域三个方面进行,频谱分析仪分析的是信号的频域特性,它主要由预选器、扫频本振、混频、滤波、检波、放大等部分组成。频谱分析仪的基本工作原理是输入信号经衰减器加到混波器,与可调变的扫频本振电路提供的本振信号混频后,得到中频信号再放大,滤波与检波,把交流信号及各种调制信号变成一定规律变化的直流信号,在显示器上显示。输入衰减器是以10 dB为步进的衰减器,主要用途是扩大频谱仪的幅度测量范围,保证第一混频器对被测信号来说处于线性工作区,使输入信号与频谱仪达到良好的匹配。滤波器的作用是抑制镜像干扰以及其他噪声干扰,保证测量的稳定准确。混频器也称变频器,它能将微波信号变换成所需要的中频信号
发表于 2019-12-03
一文了解频谱分析仪的原理
基于RIGOL的DSA815-TG频谱分析仪对射频信号的评测分析
频谱分析仪是用于测量射频信号幅度与频率之间关系的测量仪器,通常用于频域测量。而用于时域测量通常使用的仪器是示波器。频谱分析仪可以用于测量频率、功率幅度、谐波、带宽以及其他射频信号相关的参数。 我在ARRL实验室经常进行的一个重要测试项目是对发射机或功放进行带外辐射指标的测试。在该指标的测试过程中,会测量发射信号的所有谐波和杂散相对基波(载波)信号的电平幅度差。通常我们采用经过计量的Agilent/HP 8563E频谱分析仪进行测试,这台频谱分析仪的频率覆盖范围为9kHz~26.5GHz。HP 8563E是一台非常精确的,实验室级别的专业仪器,但它的价格会让绝大多数火腿和电子爱好者望而生畏。即便是一台二手的HP 8563E
发表于 2019-12-02
基于RIGOL的DSA815-TG频谱分析仪对射频信号的评测分析
介绍AT5010频谱分析仪功能及用途
AT5010频谱分析仪功能介绍聚焦旋钮(FOCJS):用于光斑锐度调节。亮度调节旋钮(1NTENS):用于亮暗调节。电源开关(POWER):按下后,频谱分析仪开始工作。轨迹旋钮(TR):即使采用磁屏蔽(铍膜合金),地球磁场对水平扫描线的影响仍然是不可避免的。 通过安装在轨迹旋钮中的电位计调节轨迹,并且水平扫描线基本上与水平刻度线对齐。中频带宽选择(400kHz,20kHz):在20kHz带宽下选择时,噪声电平降低,选择性提高,频率更高的频谱线可以分离。此时,如果扫描宽度太宽,则需要较长的扫描时间,这将降低信号转换过程中的信号幅度并使测量不正确。此时,“校准失败”LED亮起这一点。视频滤波器选择(VIDEOFILTER):可用于降低
发表于 2019-12-02
介绍AT5010频谱分析仪功能及用途
安泰维修预防频谱分析仪损坏的方法介绍
频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。那么如何预防频谱分析仪的损坏呢?下面跟着安泰维修华工一起学习一下:一、确保正确接地1、始终使用分析仪附带的三相交流电源线。2、将仪器正确接地,预防静电荷积聚。大量静电荷的积聚有可能造成仪器损坏和给操作人员带来人身伤害。3、不得使用无保护接地导体的延长电缆、电源线或自耦变压器等,以免破坏接地保护。4、检查交流电源的质量和极性; 通常要求的交流电压为100 V、120 V、220 V ±10% 或 240 V + 5%/-10%。通常预期的接地线
发表于 2019-11-30
安泰维修预防频谱分析仪损坏的方法介绍
频谱分析仪平均功率的测量方法
平均是减小测量系统固有不确定度的一个最常用的方法。进行多次测量,对其结果求平均,可以减小测量随机性的影响。如今大部分测量仪器都具有平均功能,仪器通常不是直接输出含有噪声的结果,而是测量上百次,计算出平均值,把平均值作为结果输出。但是下文会描述:频谱分析仪中的功率平均有时会导致不正确的结果。 本文的试验会引用两家不同厂商的频谱分析仪的功率测量结果。但是本文的结论对任何使用“后处理平均方法”的频谱分析仪都适用。 第一个错误观点:对均方根功率求平均,可以得出跨度为零的轨迹(或其一部分)的平均功率。为了更好的驳斥这个观点,有必要先了解一下平均的数学定义。如公式1所示:MAVE是某个试验N次测量的平均值,其中Mi
发表于 2016-07-25
频谱分析仪平均功率的测量方法
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved