技术文章—测量范德堡法电阻率和霍尔电压

2020-01-15来源: EEWORLD关键字:范德堡法电阻率  霍尔电压

半导体材料研究和器件测试通常要测量样本的电阻率和霍尔电压。半导体材料的电阻率主要取决于体掺杂,在器件中,电阻率会影响电容、串联电阻和阈值电压。霍尔电压测量用来推导半导体类型(n还是p)、自由载流子密度和迁移率。

 

为确定半导体范德堡法电阻率和霍尔电压,进行电气测量时需要一个电流源和一个电压表。为自动进行测量,一般会使用一个可编程开关,把电流源和电压表切换到样本的所有侧。4200A-SCS参数分析仪拥有4个源测量单元(SMUs)和4个前置放大器(用于高电阻测量),可以自动进行这些测量,而不需可编程开关。用户可以使用4个中等功率SMU (4200-SMU, 4201-SMU)或高功率SMU (4210-SMU, 4211-SMU),对高电阻材料,要求使用4200-PA前置放大器。4200A-SCS包括多项内置测试,在需要时把SMU的功能自动切换到电压表或电流源,霍尔电压测量要求对样本应用磁场。

 

4200A-SCS包括交互软件,在半导体材料上进行范德堡法和霍尔电压测量。4200A-SCS Clarius+软件提供了全面的程序库,除电阻率和霍尔电压测试外,还包括许多其他测试和项目。范德堡法和霍尔电压测试是在Clarius V1.5和V1.6中新增的,包括计算确定表面或体积电阻率、霍尔迁移率和霍尔系数。

 

范德堡法电阻率测量

 

人们通常使用范德堡法(vdp)推导半导体材料的电阻率。这种四线方法用在拥有四个端子、均匀厚度的小的扁平形样本上。电流通过两个端子施加到样本上,透过相反的两个端子测量电压下跌,如图1所示。

 

 

图1. 范德堡法配置

 

使用图2所示的SMU仪器配置,围着样本的边缘重复测量8次。

 

 

图2. 范德堡法电阻率测量惯例。

 

然后使用这一串8项电压测量(V1-V8)和测试电流(I)来计算电阻率(ρ),ρA和ρB是体积电阻率,fA和fB是样本对称度的几何因数,与两个电阻比率QA和QB相关。公式如下:

 

 

      图3. 电阻率计算公式

 

霍尔电压测量

 

霍尔电压测量对半导体材料表征具有重要意义,因为从霍尔电压和电阻率可以导出传导率类型、载流子密度和迁移率。在应用磁场后,可以使用下面的I-V测量配置测量霍尔电压:

 

 

图4. 霍尔电压测量配置。

 

把正磁场B垂直应用到样本,在端子3和端子1之间应用一个电流(I31pBp),测量端子2和端子4之间的电压下跌(V24pBp)。颠倒电流(I31nBp),再次测量电压下跌(V24nBp)。这种颠倒电流方法用来校正偏置电压。然后,从端子2到端子4应用电流(I24pBp),测量端子1和端子3之间的电压下跌(V13pBp)。颠倒电流(I24nBp),再次测量电压下跌(V13nBp)。颠倒磁场Bn,再次重复这一过程,测量电压下跌V24pBn、V24nBn、V13pBn和V13nBn。

 

从8项霍尔电压测量中,可以使用下面的公式计算平均霍尔系数,RHC和RHD是霍尔系数(cm3/C),计算出RHC和RHD后,可以通过下面的公式确定平均霍尔系数(RHAVG),从范德堡法电阻率(ρAVG)(表示为输出参数Volume_Resistivity)和霍尔系数(RHAVG)中,可以计算出霍尔迁移率(μH)。

 

 

使用4200A测量范德堡法电阻率和霍尔电压

 

4200A-SCS配有四个SMU和前置放大器,简化了范德堡法和霍尔电压测量,因为它包含多项内置测试,可以自动完成这些测量。在使用这些内置测试时,四个SMUs连接到样本的四个端子上,如图5所示。对每项测量,每个SMU的功能会在电流源、电压表或公共之间变化。先测量八项测试中每项测试的电压下跌和测试电流,然后导出电阻率或霍尔系数。霍尔电压测量要求对样本应用一个磁场。

 

 

图5. 四个SMUs连接到被测样本的四个端子上。

 

Clarius+测试库包括范德堡法和霍尔迁移率测量的测试。在Select视图中,可以使用屏幕右侧Material材料过滤器,在Test Library测试库中找到这些测试,如图6所示。选择测试,然后选择Add添加,可以把这些测试添加到项目树中。这些测试从vdpulib用户程序库中的用户模块创建。

 

 

图6. 选择范德堡法电阻率和霍尔系数测试。

 

可以使用范德堡法表面和体积电阻率测试。测试库有两项电阻率测试:vdp-surface-resistivity和vdp-volume-resistivity。vdp-surface-resistivity测试测量和计算电阻率,单位为Ω/square。对vdp-volume-resistivity测试,用户必须输入样本厚度,然后计算出电阻率,单位为Ω-cm。对这两项测试,都强制应用电流,进行8项电压测量。

 

还可以使用霍尔系数测试。使用四台SMU仪器,强制应用电流,使用正负磁场进行8项电压测量。磁场使用固定磁铁生成,会提示用户颠倒磁场。可以在测试库中找到hall-coefficient测试,添加到项目树中。

 

为成功地进行电阻率测量,我们必需考虑潜在的错误来源。主要为静电干扰、泄漏电流、光线、温度、载流子注入等。1)静电干扰:当带电物体放到不带电物体附近时,会发生静电干扰。通常情况下,干扰的影响并不显著,因为电荷在低电阻时会迅速消散。但是,高电阻材料不允许电荷迅速衰退,所以可能会导致测量不稳定。由于DC或DC静电场,可能会产生错误的读数。2)泄漏电流:对高电阻样本,泄漏电流可能会劣化测量,泄漏电流源于电缆、探头和测试夹具的绝缘电阻,通过使用优质绝缘体、降低湿度、使用保护装置等,可以最大限度地降低泄漏电流。3)光线:光敏效应产生的电流可能会劣化测量,特别是在高电阻样本上。为防止这种效应,应把样本放在暗舱中。4)温度:热电电压也可能会影响测量精度,源电流导致的样本变热也可能会产生热电电压,实验室环境中的温度波动也可能会影响测量。由于半导体的温度系数相对较大,所以可能需要使用校正因数,补偿实验室中的温度变化。5)载流子注入:此外,为防止少数/多数载流子注入影响电阻率测量,两个电压传感端子之间的电压差应保持在100mV以下,理想情况下是25mV,因为热电压kt/q约为26mV。在不影响测量精度的情况下,测试电流应尽可能低。

 

通过使用四个SMUs和内置测试,可以利用4200A-SCS参数分析仪简便地在半导体材料上实现范德堡法测量。通过使用用户提供的磁铁,还可以确定霍尔迁移率。如果想测试低电阻材料(如导体),可以使用基于Keithley 3765霍尔效应卡的系统,包括2182A纳伏表。 


关键字:范德堡法电阻率  霍尔电压 编辑:muyan 引用地址:http://news.eeworld.com.cn/Test_and_measurement/ic485713.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:涡轮流量计的工作原理及在输油管道中的设计应用
下一篇:弯管测量神器!全面提升机车领域的管件测量效率

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

支持多种电压选择,Diodes全极霍尔效应开关问市
为领先业界的高质量特定应用标准产品全球制造商与供货商,产品涵盖广泛领域,包括独立、逻辑、模拟及混合讯号半导体市场。公司今日推出领先市场的 AH35xx 系列全极霍尔效应开关。该系列装置具有 3V 至 28V 的宽广作业电压范围,可支持工业、办公室及家电应用常见的所有 3.3V、5V、12V 及 24V 电轨。 市场中常见的一般应用包括位置及近位感测、开路及闭路侦测、位准侦测及流量计量。AH35xx 系列的所有装置,都包含输入供电反极性及过电压保护功能,并具备出色的 6kV HBM ESD 额定值,以及输出过电压及过电流保护功能。 Diodes Incorporated 全球传感器营销经理 Charles Kuo
发表于 2019-02-19
支持多种电压选择,Diodes全极霍尔效应开关问市
霍尔电流电压传感器的工作原理
直测式霍尔电流传感器 原边电流Ip产生的磁通量聚集在磁路中,并由霍尔器件检测出霍尔电压信号,经过放大器放大,该电压信号精确地反映原边电流。 磁平衡霍尔电流传感器 原边电流Ip产生的磁通量与霍尔电压经放大产生的副边电流Is通过副边线圈所产生的磁通量相平衡。副边电流Is精确地反映原边电流。 磁平衡霍尔电压传感器 原边电压Vp通过原边电阻R1转换为原边电流Ip,Ip产生的磁通量与霍尔电压经放大产生的副边电流Is通过副边线圈所产生的磁通量相平衡。副边电流Is精确地反映原边电压。 霍尔电流电压传感器特点 ◎直测式霍尔电流传感器(50A……10000A) Ⅰ、测量频率: 0……50KHz Ⅱ、反应时间: <7uS Ⅲ、线性度: 1% Ⅳ、电源
发表于 2011-03-22
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved