充电电池容量测试仪实现方案

2020-02-11来源: elecfans关键字:充电电池  容量测试仪

电池容量是衡量电池质量的重要指标。充电电池的容量测试有很多的方法。可以依据电池的放电曲线,进行短时间放电,从而粗略得出电池容量。这种方法最大的优点是快速,但是充电电池的放电曲线并不具有普遍性,很多劣质电池放电初期电压也很平稳,一旦进入中后期,电压下降非常迅速,所以采用这种方法得出的结论将非常不准确的。最可靠最准确无误的还是以标准电流放电,全程测量实际放电时间的方式。不同的放电电流,充电电池最终能够释放出的电量是不同的,有一定的差距。蓄电池的容量标注都是有统一标准的。目前使用最多的是10小时率放电容量与20小时率放电容量两种。10小时率放电容量就是电池以恒定电流放电,至电量耗尽放电时间能够维持10个小时左右,这个电流就被称作10小时率电流(衡量电量用尽的标准,不能以电池放电端电压降低到零为准。电池过度放电,会导致电池容量减少,无法恢复,乃至提早损坏、完全失效。所以每种电池放电终止电压都有严格的规定,这个可以查阅相关资料。过度放电与过度充电是造成充电电池不能达到使用年限、提前报废的主要原因)。实时放电的测量方法最大的缺点就是费时费力,因为耗时久这样测量精度也很容易受到各种外部因素的影响。测量过程中如果用10小时率电流持续放电时间至少都要在5个小时以上,作这样长时间的测试更需要足够的耐心与精力以及充裕的时间。科技的发展是非常迅速,今天单片机已经非常普及了。通过单片机程序控制对放电时间,深度进行自动化控制,就很容易精准测出电池的实际容量,实现整个过程的自动控制。模拟实际放电测量容量的方法虽然对能源有一点浪费,但是对于1A、2A以下的小容量充电电池还是完全可行的,对大容量电池进行抽样检查也是很有必要。


下面介绍的电池容量测试仪采用89S51作为控制芯片,图1就是硬件的电路原理图。

电池容量测试仪硬件电路图

图1 硬件的电路原理图


这个电池容量测试仪由放电电路、单片机控制计时两个完全独立部分组合而成。单片机部分制作费时费力,而且市面上单片机已很普及,没必要亲手制作,随便找一片51单片机实验板就可以了。放电电路则是比较简单的,仅由四五只元件构成。单片机部分主要负责对放电时间计时,最终得到一组可靠的数据,用于电池性能的考量。


这种放电电路的实质就是一模拟可控硅。当我们将待测电池接入电路相应位置时,点按启动键,如果电池尚有余量,则电池两端放电电压将维持在设定值以上,三极管VT1就会瞬间饱和,电池通过电阻R2进行放电。这种电路有可靠精确陡峭的开关特性,VT1绝对工作于饱和截止两种状态之下。通过可调电阻对开关电路临界值(即充电电池放电终止电压)进行调节设定,便可适应于各种不同类型充电电池的全程保护放电。由于个人的应用不需要非常精准的测试结果,所以实际测试中电池模拟放电原则上还是以快些为好,只需要得到一个大致的电池容量。为了较快完成电池测试过程,这里的电路设计采用两小时率电流进行放电。通过对各种电池测量结果的横向比较,容量的差异还是显而易见的,以此作为衡量电池优劣的标准,就已经足够了。这里以1000mAH、1.2V规格镍氢电池测试为例,放电电流500mA就需要采用2Ω的放电电阻,电池终止放电电压应控制在1V以上。放电终止电压通过可调电阻R1来调节设定。普通可调电阻精度较差,且容易产生漂移,会导致设定好的终止电压随时间推移以及使用环境变化产生较大的波动。为了保证放电终止电压的精准且易于设定,R1可以使用3296系列精密可调电位器。3296多圈可调精密电位器的可调范围一般在50T,所以每圈的调节范围为2%,每转动一度,阻值变化大约0.005%,所以很容易调节获得一个精确、稳定的阻值。


终止电压的设定必须在实际放电过程中进行,负载电阻R2阻值变动,已经设定的终止电压也会随之改变,需要重新设置。具体的调试方法就不再详述了,参考一下相关资料。


这个放电电路不需要单独的工作电源,而且与电池种类没有相关性,完全可以适应镉镍、镍氢、锂电池、铅酸电池各种类型蓄电池的保护性放电,只是需要根据电池类型以及容量大小重新设置电路的终止电压及放电电流。如果电池容量相对较高,那么三极管VT1、VT2的耗散功率也要相应加大一些,同时不要忘了加大负载电阻R2的功率。


图2是放电电路的印刷电路图,元件数量少,很容易制作。

  

图2 印刷电路图

图2 印刷电路图


关键字:充电电池  容量测试仪 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/Test_and_measurement/ic487871.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:建立在ARM基础上的ADSL2+测试仪的设计
下一篇:开口阱质谱仪的原理及设计

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

高功率&高能量密度 尼吉康小型锂离子可充电电池上市
常见的蓄电装置有电气双层电容器(也就是EDLC),铅蓄电池,以及锂离子可充电电池等。EDLC的特点是功率密度高但能量密度低,因此市场需要更长时间的放电电流。 此外,锂离子可充电电池具有高能量密度但功率密度低,因此市场需要具有高输出功率和大容量的蓄电装置。尼吉康采用电容器的卷取制造技术。新开发的小型锂离子可充电电池具有如上图所示的引线型,尺寸为从直径3毫米•长度为7毫米到直径为 12.5毫米•长度为40毫米的超小型,圆筒型“小型锂离子可充电电池”。此新产品同时实现了高功率密度和高能量密度。此产品拥有:长寿命,快速充放电,低温特性以及安全性这4个特长长寿命小型锂离子可充电电池具有优异的充电/放电循环特性。 一般以往锂离子可充电电池
发表于 2020-01-02
高功率&高能量密度 尼吉康小型锂离子可充电电池上市
弥补市场空白 尼吉康发布小型锂离子可充电电池新品
“尼吉康上海分公司已经成立近20年,我们每天都看到中国日新月异的变化。中国现在是全世界物联网普及速度最快的国家之一,尼吉康认为中国物联网的发展将会更加可控、更加安全,把区块全部连接起来,实现整体发展。”近日,尼吉康在北京举办了新产品发布会。会上,尼吉康株式会社电容器事业部事业战略室室长山本俊哉先生与尼吉康电子贸易上海有限公司董事兼副总经理毛继东先生,就尼吉康的新产品以及宿迁工厂的近况,接受了EEWorld记者的采访。尼吉康株式会社电容器事业部事业战略室室长山本俊哉先生(左)与尼吉康电子贸易上海有限公司董事兼副总经理毛继东先生(中)小型锂离子可充电电池新品尼吉康全新的小型锂离子可充电电池产品并不是大众所熟知的锂电池,它是一种新颖的
发表于 2019-11-29
弥补市场空白 尼吉康发布小型锂离子可充电电池新品
荷兰新锂电池技术让充电电池增加50%的储存容量
荷兰能源研究中心开发出一种新的锂电池能量储存技术,据称可让充电电池增加50%的储存容量。为了商用化这项新发明,ECN还成立了一家新创公司——LeydenJar Technologies。该技术采用纯硅阳极,取代了锂离子电池传统上所使用的石墨阳极,从而使锂离子电池的组件储存容量增加了10倍,整个电池的储存容量则提升了50%。然而,采用硅晶的问题在于当电池充电时会随之膨胀,使得组件的尺寸增加三倍,而可能使硅层变脆,并导致电池材料碎裂。ECN使用以等离子为基础的奈米技术,将硅柱排列在铜箔上,从而为可能发生的膨胀现象创造足够的空间,让电池得以保持稳定。针对商业化应用,这一硅层最终约需要薄至10微米,这几乎要比一张纸更薄10倍。ECN的研究
发表于 2018-08-11
超级电容是什么_为啥说超级电容将取代可充电电池?
超级电容以前主要用于大功率电源和大型工业与消费类电源设备,如今在各种尺寸的产品、特别是便携式设备中也找到了用武之地。超级电容以高达数千法拉的电容值和快速充放电速率而闻名于世。由于能够长时间存储大量的电能,超级电容表现得更像是电池而不是一个标准电容。事实上,随着技术的进步,它们将替代众多产品中的可充电电池,从计算机、数码相机、手机到其它手持设备。超级电容是什么?简单地说,超级电容是一种非常大的极化电解质电容。这里的‘大’指的是容量,而不是它们的物理尺寸。的确,对于普通的电解电容来说,电容值和/或电压值越大,整个封装也越大。电解电容通常提供微法拉数量级的电容值,从约0.1uF到约1F,其电压标称值最高可达1kVdc。一般来说,额定电压
发表于 2018-03-31
TDK推出固态SMD充电电池 支持多组串并联
日前,在慕尼黑电子展上,TDK集团展示了业界首款采用紧凑SMD技术的CeraCharge固态充电电池。今天缤纷多彩的生活离不开技术各异且具有不同容量的电池和蓄电池。未来,物联网的发展将需要数以十亿计的特殊电源以满足新的超低功率半导体和传感器的需求。这些设备必须在无外部电源的状况下通过能量收集技术正常工作数年。这对于能量存储介质提出了新的要求:尺寸小,可充电,本质安全,易于装配,低成本且服务寿命长。当前技术尚不能同时满足所有这些要求。对于许多应用而言,TDK 集团的 CeraCharge 电池提供了一种摆脱当前困境的解决方案。 与大部分常见技术不同,CeraCharge 采用固体电解质替代传统的电解液,通过锂离子在固体中的移动实现
发表于 2018-03-26
TDK推出固态SMD充电电池 支持多组串并联
电池容量测试仪电路与源码(PIC16F1938单片机+AD623实现)
分享一个由PIC16F1938单片机芯片和AD623构成的电池容量测试仪.电路原理图如下:电池容量测试仪的pic单片机源码:#include    "main.h" //------------------------32MHZ---------------------------------------------- __CONFIG(FOSC_INTOSC & CLKOUTEN_OFF & BOREN_ON & PWRTE_ON & CPD_OFF          &CP_ON
发表于 2019-11-11
电池容量测试仪电路与源码(PIC16F1938单片机+AD623实现)
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved