示波器探头负载实验

2021-06-10来源: eefocus关键字:示波器  探头

示波器探头负载实验 - 针对电气工程专业学生的实际操作实验室实验和探测教程


将示波器探头连接到在线测试点时,探头本身成了被测电路的一部分,并且会影响测量结果。这通常称为"探头负载"。这个实验使用简单的2电阻分压器网 络,将从实证角度显示与频率相关的探头阻抗如何显著地影响测量精度。


所需的设备和元器件

– 2通道示波器(≥50MHz带宽)
– 函数发生器(≥10MHz)
– 两个标准10:1无源示波器探头
– 面包板
– 两个10kΩ电阻器

补偿探头

创建电路并进行实验之前,适当地补偿示波器探头是非常重要的,否则测量结果将不精确。要想补偿探头,连接示波器的通道1输入与位于示波器前面板的 探头补偿测试端子之间的一个探头。连接示波器通道2输入与相同的探头补偿 测试端子之间的第二个探头。不要忘了将两个探头的地线连接到示波器前面板 的接地端子。之后,将两个输入通道的探头衰减因数设置为10:1 (10比1)。注 意,某些高端示波器将检测是否已连接 10:1 探头,然后自动为您设置探头衰减因数。


接着,设置每个通道的V/div设置和sec/div设置,以便在示波器显示屏上显示一个或两个周期的探头补偿信号。探头补偿信号通常是一个1 kHz方波,因此 适当的sec/div设置应为200μsec/div。


如图 1 所示,使用一个小一字螺丝刀调整每个探头的可调补偿电容器,以使两 个波形都是"平坦"的响应。这个可调的电容器在探针附近或是探头的一部分, 靠近它插入的示波器 BNC 输入端。

图1: 调整每个无源探头的探头补偿

图2: 使用示波器的1kHz探头补偿信号 对10:1无源探头进行补偿。

图3: 补偿不正确的探头。

图 2 显示如果适当地调整每个探头的探头补偿,正常的通道 1 和通道 2 波形图 像。图 3 显示通道1 探头(黄色波形)过补偿和通道 2 探头(绿色波形)欠补偿的实 例。


探头补偿都包括什么?我们随后将会了解。


创建实验, 预测结果并测量结果

图4: 2 电阻分压器网络。

如图 4 的原理图所示,使用面包板和两个 10 kΩ 电阻创建 2 电阻分压器网络。 注: 如果您没有面包板,请将两个电阻焊接到一起,而不是通过长电缆和线夹将它们简单地连接到一起。长电缆会将电感加入到这个实验中,这是我们想要避免的。启动函数发生器并通过示波器执行任何测量之前,请回答以下问题:

现在让我们测试这个电路,并与预测结果进行比较。


函数发生器设置和连接:

1.将输出负载阻抗设置为High Z (而不是50 Ω)
2.将波形形状设置为Sine Wave
3.将幅度设置为5Vpp
4.将偏置设置为0.0V
5.将频率设置为10kHz
6.将发生器的输出端连接到R1。
7.将发生器接地端连接到电路接地。

示波器设置和连接:

1.连接Vin与接地端之间的通道1探头。

2.连接Vout与接地端之间的通道2探头。

9.使用手置光标或自动执行测量,或简单地计算格数再乘以垂直标度因数 (1.0V/div)来测量Vin 和Vout (峰峰值)。etup选项。

4.确保示波器两个通道的探头衰减因数仍设置为10:1。

.将通道1和通道2的垂直标度设置为1.0V/div。

6.使用垂直位置/偏置控制键使通道1和通道2波形位于屏幕的中心。

7.将水平标度(时基)设置为20.0μs/div。

8.将通道 1 的上升边沿触发大约设置为 0.0Volts (典型的默认设置)。

9.使用手置光标或自动执行测量,或简单地计算格数再乘以垂直标度因数 (1.0V/div)来测量Vin 和 Vout (峰峰值)。

现在,示波器将会显示类似于图5的图像

图 5: 使用示波器的两个通道测量10 kHz时 的 V in 和 V out 。

记录测量结果:

Vin @10kHz= ____________

Vout @10kHz= ___________

Vout/Vin @10kHz= _______

是否非常接近您最初预测的结果? _____________

现在,将函数发生器的频率设置更改为10 MHz。再将示波器的水平时基设置 更改为 20.0 ns/div,以便查看这个更快的输入信号。再次测量 Vin 和 Vout。此 时,示波器将会显示类似于图 6 的图像。

图 6: 使用示波器的两个通道测量10MHz时 的Vin和Vout 。

记录测量结果:

Vin @10kHz= ____________

Vout @10kHz= ___________

Vout/Vin @10kHz= _______

是否接近预测的结果? __________________

如果不是,原因是什么?________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________

了解探头负载

由于电容性探头和示波器负载,在10 MHz时,信号幅度通过 R2 时会降低。理想情况下,探头具有无限阻抗并且不会影响测量结果。但是,无论是使用频谱分析仪、功率计、数字万用表、网络分析仪还是示波器,只要将探头连接到被测器件,探头和仪器就会成为被测电路的一部分,同时影响测量精度。测试高频信号时,更是如此。


现在,让我们仔细查看一下刚刚在这个实验中使用的探头―在示波器输入端 的 BNC 连接端附近。可以看到,与这个探头相关的厂商的名称和型号,以及 输入阻抗技术指标/特征。如图 7所示,可能会显示"10MΩ/15pF"等。

图7: 示波器探头型号和输入阻抗特征。

这表示将探头连接到示波器时,探头的等效输入阻抗是10MΩ、15pF。图8显 示等效的探头/示波器负载模型。它是与R2并联的(参见图4)。您可以假设10 MΩ电阻较之10 kΩ电阻(R2)非常大,R2甚至可以忽略不计。您还可以假设在 低频时,15pF电容不会影响电路。但在10MHz时,这个电容的电抗是多少?

Xc = 1/(2πfC) = ____________

图8: 10:1无源探头负载模型。

现在,计算包括R2(与Xc并联)的负载阻抗。记住,您可以忽略10MΩ电阻。

输入频率设置为 10 MHz 时,确定近似的输出电压 ―现在,基于分压器的网 络包括与ZLoad串联的R1。

Vout = ______________

Vout/Vin = ___________

输入信号设置为 10 MHz 时,计算结果是否接近测量结果? _________________

所以,我们现在似乎是进退两难。我们需要测量电路的输出电压,但是只要我们将示波器探头连接到电路中,它就会改变输出特征。该如何解决这个问题?

首先,使用本实验中的 10 kΩ电阻说明一点。这就是高频时,探头的电容电抗 能够"覆没"负载电阻(R2)的阻抗。但事实上,大多数高频设计都包括低阻抗器 件/元器件。即使在低阻抗设计中,频率达到足够高(例如数百兆赫或千兆赫信 号)时,探头仍会影响被测电路。而且,目前大多数PC都在多千兆赫的范围内 运行。


此类应用通常需要专用的高频"有源"探头。无源探头(例如在本实验中使用的 这些探头) 只包括 "无源"元器件、电阻器和电容器。高频探头通常包括 "有源" 元器件,例如晶体管和放大器,而且这些探头需要电源才能运行。有源探头的 输入电容是在亚微法范围内。这说明在高频时它们对电路的影响将很小,但从 理论上讲不会没有影响。然而,这些探头的价格也远远超出标准的无源探头, 无源探头通常与示波器一起提供。有源探头几乎总是一个"昂贵的"选件。


如果您需要了解有关示波器探头的更多信息,请下载本文结尾部分列出的是德 科技应用指南《8大技巧帮助您更好地进行示波器探测》。


了解探头负载

图 9 显示使用示波器默认的 1 MΩ 输入选件连接到示波器时,10:1 无源探头电气模型的更多信息 (但仍较为简单)。虽然无源探头和示波器的电气模型包括固有/寄生电容 (设计中不包含) 以及有意设计的补偿电容网络,但我们将暂时忽略这些电容分量,只对此探头和示波器系统在低频条件下的理想信号特性进行分析。


把所有电容分量从电气模型中去除之后,只剩下一个 9 MΩ 探针电阻器和串联的示波器 1 MΩ 输入阻抗。探针的净输入电阻是 10 MΩ,与之前所示的探头负载模型一致 (图 8)。根据欧姆定律,您可以发现在示波器的 BNC 输入端接收到的电压等于探针处电压的 1/10:

这就是此类探头称为 10:1 (读为 "10 比 1" ) 探头的原因。一旦示波器获知其输入端附带一个 10:1 探头,所有测量和垂直标度因数都要乘以 10,以便参考探针的测量结果。示波器 "获知" 其附带一个 10:1 探头的方法是您手动输入探头衰减因数或通过自动检测。如果您使用的是没有探头衰减因数的较老的模拟示波器,您需要自己进行数学运算,以便参考探针的测量结果。


对于低频或直流应用,忽略电容分量是适合的。但如果您需要测量动态信号(这是示波器的主要测量应用),那么就不能忽略此电气模型中的电容分量。因此,现在让我们仔细查看一下动态/交流输入信号条件下的探头和示波器型号。

图 9: 无源 10:1 探头连接到示波器 1 MΩ 输入阻抗的简化模型。

所有示波器探头和示波器输入都具有固有/寄生电容,其中包括探头电缆电容

(Ccable)和示波器输入电容(Cscope)。"固有/寄生" 的意思是指电气模型的这些分量不是有意加入的,而是在实际电子世界中客观存在的。不同示波器和不同探头具有不同大小的固有/寄生电容。如果不特意加入其他的电容分量来补偿系统中的固有电容分量,那么系统在动态信号条件下 (非直流) 的电抗可能会改变探测系统的总体动态衰减,使之偏离预定的 10:1 比率。


在可调补偿电容器(Ccomp)之外添加/故意加入探头探针电容器 (Ctip),目的是组建一个电容电抗衰减网络,以便匹配 10:1 电阻衰减。换句话说,Ctip 的电抗必须恰好是并联组成的 Ccomp + Ccable + Cscope 的电抗的 9 倍。如果确实如此,那么不仅低频信号将以 9MΩ 探针电阻 (Rtip) 和串联的 1 MΩ 示波器输入电阻 (Rscope) 为基础进行衰减 (衰减系数为10),而且高频信号也将以类似的 10:1 电容电抗分压器网络为基础进行衰减 (衰减系数为 10)。


现在,让我们使用以下条件计算所需的补偿电容 (Ccomp):

在这个实际操作的示波器探头负载实验室实验中,希望您能够明白将示波器探头连接到被测器件时,探头和示波器将成为电路的一部分,并且会给测量精度带来负面影响,特别是在探测高频信号时。在许多入门级教学实验中,您这可能不需要考虑这个问题。但是,在一些高级和研究生级的电气工程教学和实验(可能重点研究高频射频应用或高速数字应用) 中,您有时需要关注一下探头负载。切记,数字信号具有远远超出信号时钟速率的高频谐波。根据 "经验" ,包括示波器的探测系统的电容电抗应是被测系统 Thévenin 等效源阻抗的 10 倍或以上。对于本文中列出的实验 (图 4),Thévenin 等效源阻抗将为 5 kΩ。


您还需要知道 10:1 无源示波器探头的工作原理及探头补偿机理。尽管了解探头补偿的原理可能不是很重要,但适当的补偿探头非常重要 ― 即使是在诸多低频入门级实验室实验中也是如此。使用示波器执行任何测量之前,最好将探头连接到示波器前面板的探头补偿信号并确保对其进行适当的调整。

关键字:示波器  探头 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/Test_and_measurement/ic538234.html

上一篇:示波器入门 - 如何使用示波器显示数据
下一篇:使用示波器进行汽车串行总线测试

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

怎样使用取样示波器精确的测量抖动?
当用示波器测量抖动时,一定要知道测试设备对测量结果的贡献。您测量的始终是示波器中的固有抖动与被测器件及DUT驱动源所造成抖动的组合。通常DUT造成的抖动与测试系统的固有抖动有同一量级的幅度。在多数情况下,这三个贡献者是随机和不相关的,因此如果您使用统计法测量抖动(有效值抖动),它们就以各贡献者的均方根叠加。有可能测量示波器和源的贡献,从总测量结果中抽出DUT的贡献。有许多因素影响示波器的实际抖动贡献,而且仪器间也各不相同。触发电平设置:对最小抖动的最佳触发电平,各种触发电路并不相同。它会随器件的不同而不同。调整触发电平,以得到最小的抖动。触发信号上升时间:示波器测量触发信号和数据间的相对抖动。不能看到触发和数据信号上的共同抖动
发表于 2021-05-21
入门新手是否推荐买二手示波器
您可以根据您的使用需求选择原厂翻新仪器或二手仪器。当您购买Keysight原厂翻新仪器时,您最多可以节省70%的成本,并且获得一台近乎全新的设备。Keysight原厂翻新仪器为您提供了大量精选的高品质测试设备。每台设备都会经过严格的翻新流程,经过翻新,设备的各性能指标和外观都能达到新机的标准。您可以以更少的成本获得具有百分之百质量和性能的 Keysight 产品。以下是原厂翻新仪器、二手仪器的质量标准与新产品相比的特点和差异:
发表于 2021-05-21
入门新手是否推荐买二手<font color='red'>示波器</font>?
详细的讲解示波器的使用方法以及步骤?主要测试直流电压
以下是Keysight InfiniiVision 6000 X 系列示波器电压测量步骤。仅供参考。请参见:示波器 | Keysight (安捷伦)  您也可以参考次示波器用户指南 下图显示电压测量点。平均值平均值是波形采样的电平总和除以采样数目。使用通道探头单位软键将每个输入通道的测量单位设置为伏特或安培。峰 - 峰值: 峰 -峰值是最大值和最小值之间的差。Y 光标显示正在测量的值。最大值:最大值是波形显示的最高值。Y 光标显示正在测量的值。最小值:最小值是波形显示的最低值。Y 光标显示正在测量的值。X 上的 Y:X 上的 Y 测量指定源波形上指定水平位置的垂直值。水平位置必须在屏幕上。如果水平轴是时间,则水平位置
发表于 2021-05-21
详细的讲解<font color='red'>示波器</font>的使用方法以及步骤?主要测试直流电压
示波器有哪些鲜为人知的使用技巧?
探测技术对于高质量的示波器测量至关重要,而探头通常是示波器测量链中的第一环。如果探头的性能不足,就会在 示波器上看到失真信号或误导信号。为您的应用选择恰当的探头是进行可靠测量的第一步。如何使用探头也会影响您 进行精确测量的能力,以至于影响您获得有用的测量结果。技巧 1:选择无源探头还是有源探头?对于中低频(小于 600-MHz)测量来说, 无源高阻抗探头是很好的选择。这些探头 坚固耐用且价格经济,具有宽动态范围(大 于 300 V)和高输入阻抗,从而和示波器 的输入阻抗相匹配。不过,和低阻抗(z0) 无源探头或有源探头相比,无源探头具有 更高的电容负载,而且带宽较低。总之, 对于绝大多数模拟或数字电路的通用调式 和故障诊断来说,高
发表于 2021-05-21
如何使用示波器验证电源与时间相关的各项指标
是德科技电源部分的功能性测试主要项目包括:输出纹波及噪声、过压保护截止时间、电源开启以及关闭延时、电源上、下编程时间、瞬态响应恢复时间等。1. 输出纹波及噪声理想的直流电压应该是随时间变化恒定不变的固定值,但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即使是用电池供电也会因负载的波动而产生波纹。所以直流电源的输出中夹杂的交流成分,从而使输出偏离了我们所希望的电压和电流。通常将该交流成分定义在一个特定的带宽范围内 (20 Hz–20 MHz),表征为输出噪声。我们以E36311A电源为例,用示波器MSOX3054A测试这台电源的纹波噪声,由于我们现有表笔是 10:1的,引线也有干扰
发表于 2021-05-21
如何使用<font color='red'>示波器</font>验证电源与时间相关的各项指标
如何在不输入用户名和密码的情况下使用是德科技示波器
在默认情况下,这些设备中的Windows 95/98和Windows XP操作系统要求用户使用同一个用户名和密码进行登录。您可能希望改变这种方式,以便自己和他人更易于访问示波器。 如果您的示波器不属于某个Windows域的话,这就很容易做到了。请按照下列步骤在Windows启动过程删除登录提示。 按下Ctrl+Esc组合键打开Start(启动)菜单,然后运行winver命令,即可确定您所使用的Windows版本。Windows XP计算机按下Ctrl+Esc组合键打开Start(启动)菜单,键入sysdm.cpl,然后点击OK(确定)。点击Computer Name(计算机名称)选项卡。查看“Full computer name
发表于 2021-05-21
小广播
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 信号源与示波器 分析仪 通信与网络 视频测试 虚拟仪器 高速串行测试 嵌入式系统 视频教程 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2021 EEWORLD.com.cn, Inc. All rights reserved