浅谈数字示波器和取样示波器的关键器体

最新更新时间:2023-06-05来源: elecfans关键字:数字示波器 手机看文章 扫描二维码
随时随地手机看文章

电子示波器是最受欢迎的电信号测量工具,目前数字存储示波器的实时带宽超过10GHz,取样数字示波器的等效带宽达到100GHz,在实验室、车间、现场都有各种电子示波器为电信号测量提供数据。根据电子示波器的基本原理可分为模拟和数字两大类。由于模拟示波器在电路结构上比数字示波器复杂,带宽1GHz以上的电子示波器全部是数字示波器就不难理解了。当带宽超过10GHz时,取样数字示波器又具有电路结构最简单的优势,除了取样门要求最高带宽之外,其它都是低速电路,因而较易获得100GHz的等效带宽。


带宽1GHz以上的数字存储示波器和等效带宽10GHz以上的取样示波器,它们的单台售价相当昂贵。针对特定应用往往仅使用到某些频率和功能,此时,根据被测对象构建用户定制的数字存储或取样示波器是可取的方法。本文提供有关的关键器件和电路都是近年的新产品。

浅谈数字示波器和取样示波器的关键器体

图1 取样率2GS/S的ADC芯片的结构框图

浅谈数字示波器和取样示波器的关键器体

图2 双管式半桥式取样头电路

数字示波器的关键器件

数字存储示波器的关键器件——输入前端模/数转变器,通常是测量仪器公司自行设计和专用的高速集成电路,不供市售,例如TeK公司用在TDS5000等系列使用的带宽500MHz以上的ADC,由TeK和IBM共同开发制造,成本很高,只供维修时更换。直到今年Atmel公司推出AT84AS系列高速ADC,才有带宽1GHz,取样率2GS/S,分辨率10位的产品可供使用。现在,电子应用工程师可购买到高速高精度的ADC,构建数据采集系统、数字存储示波器、自动测试系统、直接射频转换器等高频电路。Atmel供应的AT84AS系列,目前有两个型号:AT84AS003和AT84AS004,前者的取样率1.5GS/S,后者的取样率2GS/S,两者完全兼容,AT84AS004的主要特征为:

·最高取样率-2GS/S

·最高分辨率-10位

·模拟输入电压和阻抗-500mv,100Ω(差分)、50Ω(单端);

·模拟输入带宽-3.3GHz

·1GHz的高频特性—有效位数7.8位,信噪比51dB,无杂波动态范围-55dB,

·调节功能-ADC增益,取样延迟,数据有效输出,超量程指示输出,1:4多工信号输出。

·供电电压—-5V,-2.2V,3.3V,2.5Vp,功率耗散6.5W

·装封—-EBGA317,25×35mm

·工作温度-0℃~90℃(民用级)-20℃~110℃(工业级)

AT84AS004芯片的结构框图如图1所示,从图1可见,输入信号Vin经取样保持电路S/H,送入量化器和逻辑电路,在时钟输入CLR,取样延迟调节SDA、图形发生器有效位PGEB、复位脉冲DRRB作用下实现A/D转换过程。获得的A/D数据输出经解多路复用器DMUX和低压差分缓冲级LVDS放大,形成4路输出端口A、B、C、D,4组输出的10位数字信号供存储器、DSP等作数据处理使用。芯片的调节信号还有内建自测试BIST,异步复位ASYNRST,增益调节GA,二进制和灰度码选择B/GB,休眠状态SLEEP等。


AT84S004芯片是目前市售频率指标最高的ADC。首先是取样率达到2GS/S,模拟输入带宽是3.3GHz。按取样原理可知,ΔF≤Fs/2即实时带宽应小于/等于取样率Fs。该芯片的Fs=2GS/s,求得△F=1GHz,即第一奈奎斯特区处在1GHz以下,第二奈奎斯特区扩展到2GHz。为避免产生波形混淆,数字存储示波器只使用第一奈奎斯特区,但是,双频通信应用时,可进入到第二奈奎斯特区,因为需为更宽的输入带宽。其次,在1GHz下的有效位数是7.8位而不是10位,由于时钟频率提高和电压比较器电平不稳,高频的分辨率会下降,从10位变成7.8位。大部分市售数字存储示波器的分辨率是8位。在高频时会低于7位。还有,芯片提供1:2和1:4的多工数字输出,对于后端数据处理非常有利,可以使用时钟较低的闪存和DSP,降低电路成本。


Atmel公司的AT84AS系列TDC仍在发展中,CMOS芯片的时钟频率可达到5GHz,表明该系列的取样率还有提高的潜力,Atmel今年已连续推出1.5GS/S和2GS/S两种ADC。Maxim公司的MAX108是8位分辨率和1.5GS/S的ADC,同样适用于数字存储示波器。


取样示波器的关键器体

取样示波器的关键器件是取样头,在原理上并非数/模转换过程而是开关过程。如果开关脉冲宽度用τ表示,等效带宽用ΔF表示,则求得ΔF=a1/τ,式中α是与开关脉冲波形有关的常数。例如,当τ=0时,ΔF =∞,亦即,开关脉冲宽度趋于零时,等效带宽趋于无限大。一般假设开关脉冲是钟形函数,此时,作为估算可取ΔF =0.35/τ,当τ=3.5ps,求得ΔF=100 GHz。


取样门电路可用桥式电路,通常采用如图2所示的双管半桥式开关电路。当输入的+LO和-LO驱动脉冲加到反向偏置的快速开关二极管对,+L0和-L0驱动脉冲分别由2PS微带线短路,产生1PS级的开关脉冲,并且对被测信号RF取样。取样获得的信号样品瞬间电荷保持在Chold电容对上,将取样电荷作处理和在慢速时间上对样品重建,即完成顺序取样的显示过程。由此可见,取样示波器在取样门实现高频高速的开关变换后,后端的信号处理可在低频低速下重建。如果后端采用数字处理,就是取样数字示波器,采用模拟处理,就是(模拟)取样示波器。


取样门的电路元器件不多,测量仪器公司按微波电路制成在陶瓷片上,密封在金属外壳内,输入RF信号和取样脉冲由小型同轴接头连接,与数字存储示波器的ADC芯片相似,取样示波器的高频高速取样头并无市售产品,近年来情况有很大变化,PSPL(皮秒脉冲实验室)公司供应带宽高至100GHz的取样头,使测量工程师构建取样示波器变得容易得多,也促进了取样技术的发展。图2实际上就是PSPL公司的通过式100GHz取样头,取样头具有如下的特性:

·取样孔径-3ps~35ps(在设计时固定)

·孔径抖动—《1ps(RMS),

·RF带宽—达到100GHz,

·RF输入动态范围—2Vp-p,

·RF阻抗—50Ω,可用SMA~1mm同轴接头,

·取样率—》10GS/S

·取样效率—60%

由上述指标可知,该取样头满足10GHz~100GHz等效带宽的测量,办法是调节取样脉冲的宽度,即取样孔径。改变图2中的微带线长度是最常用的方法,PSPL在这里采用更简便和灵活的高速反向阶跃二级管代替微带线,构成非线性短路传输线,达到取样脉冲宽度连续可调和极快速的上升边沿。取样率达到10GS/S同样是过去的取样头未曾具备的指标,传统电路采用雪崩三极管产生阶跃边沿的脉冲,再由阶跃恢复二极管整形获得10PS级的取样脉冲。这种电路的最高工作频率受雪崩三极管要进入饱和区的限制,只能在1MHz以下的重复频率运行。PSPL使用级联非饱和放大器电路将方波脉冲整形,得到高重复频率的阶跃脉冲,取样率从1GS/S提高到10GS/S。因而,PSPL的100GHz取样头既可构建等效带宽〈100的取样示波器,同时相当于取样率10GS/S的实时数字示波器。

浅谈数字示波器和取样示波器的关键器体

图3 取样脉冲整形和放大电路

产生步进时基的几种方法

数字存储示波器的时基取自前端ADC时钟的倍频分频器,亦可采用后端的DAC输出,两种方法都获得时间步进扫描。取样示波器需要采用有顺序延时的取样脉冲,而不是等时的时钟脉冲,数字方法有可程控延时芯片(PDC)或时间/数字转换器(TDC),它们都有市售产品,延时增量可从10PS级至100PS级变化。后者可获得10PS级的步进延时,所谓游标延时发生器实际上是机械式游标卡尺的电学实现,游标卡尺的两块夹片的mm标度相差1/10,根据被测物体在两夹片标度测得的重合点,即可获得0.1mm的读数精度。


按游标卡尺的同样原理,利用两个振荡频率F2和F1的频差F可产生高精度的步进延时,如下式所示:

k=f2/(f2-f1)=f2/Δf 或 k=T1/(T1-T1)=T1/ΔT

式中K是两个周期的重合点,f2(T2)和f1(T1)分别是两个不同频率和相应周期,ΔT是时间差。不难看出,ΔT相当步进延时,K相当取样点数。例如,一块晶体振荡器的f1=8.000,000MHz,另一块晶体振荡器的f2=8.000,156MHz即可求得T=2.4PS,K=52,083取样点。具体电路可用通用逻辑IC构建,f2晶体振荡器经整形电路形成方波,它的上升边沿作为步进延时的参改零点,f1晶体振荡器亦整形为方波,两步频率由运算放大器作差分运算得到差频Δf,根据实际需要再作其它逻辑运算,在室温下晶体振荡器的频率稳定度优于1×10-8,两块晶体振荡器获得的总步进延时为125ns,相当于一次扫描长度。


需要步进延时的市售芯片时,可考虑ADI公司的AD9501数字程控延时发生器,从电路结构来看,它是利用DAC产生精确参考电压与斜波电压作比较,由运算放大器输出全程2.5ns至10礢扫描长度,步进延时最小10PS的可调脉冲,最高触发频率50MHz。Maxim公司的DS1023程控定时元件,电路结构是可调延时线,可配置成程控延时,脉宽调制和振荡器,步进延时分为0.25,0.5,1.0,2.0,5.0ns共5档。性能最好的MC100195程控延时芯片是安森半导体公司的产品,采用ECL工艺和面阵列封装,电路结构是多级串联门序列,具有高达1GHz的工作频率,最小步进延时20PS,最大扫描长度2.0ns还可多芯片串接,获得更大扫描长度。关于时间数字转换器的市售芯片可选产品不多,法国ESRF公司的AMS111芯片主要用于核电子测量,电路结构是可调延时线,可调步进延时范围130~160PS,动态范围2礢,工作频率80MHz,4通道输入。


最后,步进延时脉冲要整形和放大,然后送到取样头,对被测信号取样。完成开关取样的转换过程。随着RF放大器性能的进步,带宽1GHz,转换率优于6KV/礢的晶体管有多种型号,图3是一种典型的取样脉冲放大电路。


关键字:数字示波器 编辑:什么鱼 引用地址:浅谈数字示波器和取样示波器的关键器体

上一篇:从时域到频域-换个角度看世界
下一篇:数字示波器结构原理 数字示波器内部结构图

推荐阅读最新更新时间:2023-09-23 09:53

数字示波器在匝间短路测试中的测试原理和方法
高效、可靠的匝间短路测试方法对企业提高生产和检测、维修的效率都有重要的意义。本文介绍数字示波器在匝间短路测试中的测试原理和方法。 目前市面上有不少专用的绕组匝间冲击耐电压测试仪,这类匝间冲击耐电压测试仪产品的基本原理都是以同型号绕组感抗相等为前提,采用波形比较法,以高压脉冲对等效过电压、无损模拟试验。然后通过示波器这样的装置通过完全一致的取样回路来测量这个脉冲在绕组线圈中的振荡波形,如果两个波形不一致,那么表明这两组线圈中至少有一组存在匝间短路的故障。 目前大多数匝间仪显示波形都还在采用取样信号去激励CRT偏转线圈这样的模拟示波器显示方法,要判别两组振荡波形的异同,就利用绕组切换继电器常开触点与常闭触点的高速切换,变压器试验
[测试测量]
露一手:自制数字示波器
随着电子技术的发展和电路结构的变化,对电路测量的要求也变得更高,在电子制作中会发现对很多参数的测量已不是一块万用表所能胜任的了,比如单片机某I/O口的输出波形或制作放大器测其频率响应等等,所以示波器自然而然地和万用表一样变成了电子工程师和爱好者的必备工具。然而示波器动辄几千上万甚至数万元的价格不是每个人都能接受的,如果你是一名电子爱好者或者和我一样是一名电子专业的大学生,何不发挥自己的聪明才智自己制作一台够用的示波器,不仅省钱,更可以享受DIY带来的独特乐趣!   下面就示波器的基本原理简要介绍一下,再就数字示波器与模拟示波器做一个简要的比较。物理学理论可以证明,一端通过细绳固定的重物在作摆动时,与中心垂线的距离满足正弦波
[测试测量]
露一手:自制<font color='red'>数字示波器</font>
Matlab与数字示波器的通信
    摘要: Windows环境下Matlab与TDS系列数字示波器的通信过程,给出了相关的通信程序,并在Matlab中对示波器读取的波形数据进行了频域处理。从而表明它们之间的通信在数字信号处理方面具有重要的实际意义。     关键词: Matlab 串行通信 示波器 数字信号处理 Tektronix公司的TDS系列数字实时示波器在国内已经得到广泛的应用,与其配套的扩展模块TDS2CM和TDS2MM模块具有与外部设备双向通讯的能力,可直接与打印机、微机连接,使波形的存储打印等工作变得十分方面,其中TDS2MM还具有FFT功能,可以对波形进行实时的频谱分析。同机配送的Wavestar软件提供了PC机与示波器
[嵌入式]
数字示波器的存储深度
之前已经给大家介绍过了关于数字示波器的几个相关知识比如采样速率等等,那么大家还知道数字示波器的哪些相关知识呢?大家对数字示波器的存储深度了解多少呢?下面中国传感器交易网的专家来给大家介绍一下数字示波器的存储深度。 存储深度是同样是比较重要的技术指标,数字示波器所能存储的采样点多少的量度。 如果需要不间断的捕捉一个脉冲串,则要求示波器有足够的内存以便捕捉整个事件。将所要捕捉的时间长度除以精确重现信号所须的取样速度,可以计算出所要求的存储深度,也称记录长度。 并不是有些国内二流厂商对外宣称的“存储深度是指波形录制时所能录制的波形最长记录“,这样的偷换概念,完全向相反方向引导人们的理解,难怪乎其技术指标高达”1042K“的记录长度。 这
[测试测量]
怎么知道数字示波器的基础指标值是不是达标
在启动进到检测页面后,內部程序流程有“自查(selftest)”作用,当“自查”进行后,会在显示屏上显示信息出“自查根据”的提醒(SELF-TESTPASSED).內部程序流程“自查”作用,只有检测一些十分內部的情况,主要是储存器等,别的作用也要靠手工制作检测: ①数字示波器会内置一个检测数据信号,将摄像头收到数字示波器的检测数据信号輸出端,它一般为1~9V/1KHZ的波形数据信号。 ②按全自动设定按键(AUTOSET),也可手动式开启。显示屏应该显示信息十分平稳的,标准的波形数据信号,如下图这类方式检验数字示波器的关键作用是不是一切正常,如开启,同歩等,另外还能顺带检验摄像头的赔偿是不是适合,不然必须调整。 ③数字示波器的
[测试测量]
怎么知道<font color='red'>数字示波器</font>的基础指标值是不是达标
数字示波器的功能用途_数字示波器的测量用途
数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。 数字示波器的用途 1、可以测量直流信号、交流信号的电压幅度 2、可以测量交流信号的周期,并以此换算出交流信号的频率。 3、可显示交流信号的波形。 4、可以用两个通道分别进行信号测量。 5、可以在屏幕上同时显示两个信号的波形,即双踪测量作用。此作用能够
[测试测量]
选择数字示波器需要注意的问题
一台低档次、高档次的数字示波器价格相差近50倍(8000元-50多万元)。怎样选择才算合理呢? 1、带宽 如需要精确测量带宽选择和最高被测信号频率的关系,我们先来看下面的一个例子:例如有一个50MHz的脉冲信号,为了保证测试信号幅度和上升延的精度,选择示波器的带宽应为被测信号频率的3-5倍,精确测量要8-10倍或以上。 2、采样本 正弦波:大于5个采样点/周期(一般要求),采样点越多越接近其实波形。 脉冲波:上升沿要大于5个采样点。 精确测量上升沿要大于10个采样点。 3、储存长度:储存长度=采样本*扫描速度*10,也可以说是波形观测时间。 4、触发功能
[测试测量]
如何采用数字示波器进行多域测量?
  在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或捕捉它们之间的关系。采用微控制器实现的RF信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人头痛的问题。   通常可以使用数字示波器分析这些信号所产生的问题,但是大多数开发人员却试图寻找其它的仪器。虽然最终可能完成了工作,但是却花费了大量时间,还需要非常丰富经验。将模拟信号、数字信号和RF信号的测试功能整合在一台仪器中,可以降低对不同设计项目所需要的时间和专家经验。   本文介绍的示波器拥有多个模拟通道(既可用于
[测试测量]
小广播
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved