datasheet

在设计中最常见的几大功率因数误区 帮你校正

2014-01-15来源: 电源网关键字:功率因数  误区

什么是功率因数校正(PFC)?


功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因数可以衡量电力被有效利用的程度, 当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型, 使其与直流电电压波型尽可能一致,让功率因数趋近于。 这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下,电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。


PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式 PFC)。


PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。这时候酒杯的利用率就很低,相当于电源的功率因数就很小。PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。


为什么我们需要PFC?


功率因素校正的好处包含:


1. 节省电费


2. 增加电力系统容量


3. 稳定电流


低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。


PFC电源供应器是如何帮助节省能源?


藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。


什么是谐波?


谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)]


有哪些国家规定PFC为电子设备的标准配备?


2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W~600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因数校正 (PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。


什么是主动式/被动式功率因数校正(Active/Passive PFC)?


被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因此需要大量的电感与电容。而且其功率因素校正仅达75%~80%。 主动式PFC使用主动组件 [控制线路及功率型开关式组件(power sine conductor On/Off switch),基本运作原理为调整输入电流波型使其与输入电压波形尽可能相似,功率因数校正值可达近乎100%。 此外主动式PFC有另一项重要附加价值,即电源供应器输入电压范围可扩增为90Vdc到264Vdc的全域电压,电源供应器不需要像以往一般需切换电压。相对地,因为其优异功能,主动式PFC价格也较高。另外消费者还要注意,一般而言很多被动式的设计,在115V的系统上是没有置入的,因为厂商只作 230V的部分,所以需请在115V电压系统下的消费者,留意此问题,可能多花了钱却买到在115V下没有PFC作用的电源供应器。


被动式PFC一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,被动式PFC包括静音式被动PFC和非静音式被动PFC。被动式PFC的功率因数只能达到0.7~0.8,它一般在高压滤波电容附近。


而主动式PFC则由电感电容及电子元器件组成,体积小、通过专用IC去调整电流的波形,对电流电压间的相位差进行补偿。主动式PFC可以达到较高的功率因数——通常可达98%以上,但成本也相对较高。此外,主动式PFC还可用作辅助电源,因此在使用主动式PFC电路中,往往不需要待机变压器,而且主动式PFC输出直流电压的纹波很小,这种电源不必采用很大容量的滤波电容。为什么主动式PFC优于被动式PFC?


1. 主动式PFC提升功率因素值至95%以上,被动式PFC约只能改善至75%。换句话说,主动式PFC比被动式PFC能节约更多的能源。


2. 采用主动式PFC的电源供应器的重量,较用笨重组件的被动式PFC产品要轻巧许多,而产品走向轻薄小是未来3C市场必然趋势。


主动式PFC的优点:


校正效果远优于欧洲的 EN 谐波规范,即便未来规格更趋严格也都能符合规定。

随着IC零件需求增加,成本将随之降低。

较无原料短缺的风险。

较被动式专业的解决方案。

能以较低成本带来全域电压的高附加价值。

功率因数接近完美的100%,使电力利用率极佳化,对环保有益。

因应未来CPU发展趋势,输出瓦特数(电力)要求将越高,主动式PFC因成本不随输出瓦特数增加而上升,故拥有较好竞争力。

被动式PFC的缺点:

当欧洲EN的谐波规范越来越严格时,电感量产的品质需提升,而生产难度将提高。

沉重重量增加电源供应器在运输过程损坏的风险。

原料短缺的风险较高。

如电源内部结构固定的不正确,容易产生震动噪音。

当电源供应器输出超过300瓦以上,被动式PFC在材料成本及产品性能表现上将越不具竞争力。


如何区别主动式功率因数校正?


知道了主动式功率因数校正(Active Power Factor Correction)的好处后,使用者最想知道的是如何区分真的具有主动式功率因数校正功能的电源供应器。在此提供几项简单评量的方式:


1.看文字叙述:


准确率90%以上。因为功率因数校正是很有用的功能,厂商当然希望能藉此吸引消费者,所以有此功能的必定会用文字描述。所以有看到"功率因数校正"、"Power Factor Correct" 或 "PFC" 这些字眼的产品,都是有功率因数校正功能的。同理,因为主动式的较被动式的功率因数高,厂商没有理由不大书特书一番,所以基本上没说明为主动式的功率因数校正产品必定为被动式的。


2.看规格书:


准确率100%。若有功率因数校正功能,在其产品规格书中应该可以看到功率因素(Power Factor, PF)的值, 我们知道 PF值要大于90%以上才是主动式的功率因数校正


3.看电源外观:


准确率50%。在目前所知的技术下,具有主动式功率因数校正的电源供应器,不会有电压切换开关(多为红色),其输入电压必须是全域电压(Full range/ universal free input)或固定电压,而不能是切换电压。所以如果你看到有电压切换开关。就不会有主动式功率因数校正的功能。但相反的,并不是所有无电压切换开关(多为红色)的电源都有主动式功率因数校正功能,所以使用此法的准确率只有50%,建议应与前两项指针交互印证。

关键字:功率因数  误区

编辑:探路者 引用地址:http://news.eeworld.com.cn/dygl/2014/0115/article_20060.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:应该好好问问自己 谁在真正负责你的电源管理?
下一篇:源于资深工程师的汽车启动/停止系统电源方案

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

技术文章—为什么功率因数会出现负值

功率因数通常都是正值,但现场测试时,会遇到仪器测量结果出现负值或正负跳变的情况,本文就和大家聊聊功率因数出现负值或正负跳变的常见工况。 参考功率分析仪手册,可参阅到有功功率P计算是瞬时的电压电流相乘后求平均:  其中:n为采样点数,由测量区间决定。 功率因数PF=P/S。其中S为视在功率,且一直为正值,所仪功率因数PF的正负跟随P的变化,当P为负时,PF也就是负了。  发电系统 参考IEC60375标准,功率因数PF=P/S,正负号由有功功率的方向决定。有功功率P和功率因数PF处于四象限运行,指示了测评点的发电/用电特性。当被测负载是发电的,按照IEC标准,位于
发表于 2019-06-03
技术文章—为什么功率因数会出现负值

士兰微电子推出多款高功率因数隔离LED驱动芯片

近期,士兰微电子又陆续推出了多款高功率因数隔离LED驱动芯片,包括单级原边控制高功率因素LED驱动SD682X系列和SD689X系列,具有PWM/线性调光功能的单级原边控制高功率因素LED驱动电路SD7880等。这些新品各具特色,其中,SD682X系列是士兰微电子SD68系列LED驱动的迭代升级产品,需要指出的是,士兰微电子的SD68系列产品在LED照明行业是深受好评的,堪称业内翘楚。此次迭代升级的产品与同行竞品相比,有整体竞争优势,具有高PFC、高恒流精度和高转换效率等特点。是业界第一颗去COMP电容的产品,可有效地防潮湿防漏电,广泛应用于筒灯,平板灯,轨道灯等LED照明市场。该系列产品采用士兰微电子自有的先进工艺,集成650V
发表于 2019-04-17
士兰微电子推出多款高功率因数隔离LED驱动芯片

功率因数校正: PQvar™助力提高能效并确保负载平衡

TDK集团推出新型爱普科斯 (EPCOS) PQvar™ 模块化静态无功发生器,该设备广泛用于工业电网和大型商业建筑的主动式无级功率因数校正和负载平衡应用。PQvar全响应时间<15 ms,快速响应时间<50 µs,补偿速度比传统无功补偿更快。该设备可主动补偿感性和容性负载,且功率因数可达到0.99及以上。对于低压等级应用。PQvar可应用于400 V和690 V系统。在该电压等级下,单个模块输出容量可达30 kvar至200 kvar,且单个补偿柜最多能提供高达880 kvar的无功补偿容量。PQvar功率因数校正系统可显著提升能效。一方面,电力输配电网的功率损耗显著降低,且减少了浪费电能导致的二氧化碳排放;另一方面,变压器
发表于 2018-04-20

解析定义与测量方法,设计功率因数测量电路

1.功率因数的定义 为了表征交流电源的利用率,在电工学中引入功率因数PF(PowerFactor)这个术语,定义为有用功率P和视在功率S之比值,即 PF = P/S (1) 随着各行各业控制技术的发和要求可操作性能的提高,许多场合的用电设备都不直接使用通用交流网提供的交流电作为电能来源,而是通过各种形式对其进行变换,从而得到各种所需的电能形式。它们的幅度、频率、稳定度及变化方式因用电设备的不同而不同,如电动机变频调速器、绿色照明电源、开关电源等等,它们接入电压网后,也有一个交流电源的利用率问题。上述产品有一个共同特点就是:利用桥式整流器和大容量的滤波电容实现AC/DC转换,由工频市电获得直流电
发表于 2018-04-03
解析定义与测量方法,设计功率因数测量电路

功率因数补偿是什么?容性负载有何危害?

功率因数补偿:在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。用电容器并连在感性负载,利用其电容上电流超前电压的特性用以补偿电感上电流滞后电压的特性来使总的特性接近于阻性,从而改善效率低下的方法叫功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。而在上世纪80年代起,用电器具大量的采用
发表于 2018-03-31

用单片机测量三相电网功率因数角的测量原理

  本文介绍使用8031单片机测量三相电网功率因数角的原理、接口电路和程序实现。经实践验证,测量准确、稳定。      本方案所用的检测输入信号为线电压与线电流,即UCA与IB,或UBC与IA,或UAB与IC。这是因为它们之间的夹角θ和待测相角φ之间具有线性对应关系。现以UCA与IB为例,表明其夹角θ与相角φ间对应关系的矢量图如下图所示。●容性:0= 90°-0°,r=T/4~T/2,纯容性时,θ=0°,T= T/2。从上述分析得知,只要测量时间r,便可间接测量相角c。
发表于 2018-03-15
用单片机测量三相电网功率因数角的测量原理

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved