TI OPA855 8-GHz运算放大器贸泽开售

2019-09-16来源: EEWORLD关键字:运算放大器  TI

专注于引入新品的全球电子元器件授权分销商贸泽电子 (Mouser Electronics) 即日起备货Texas Instruments (TI) 的OPA855非完全补偿放大器。该款双极性输入的宽带低噪声运算放大器非常适合配置为高带宽跨阻放大器和电压放大器,其8GHz增益带宽积 (GBWP) 可以在维持较高闭环带宽的前提下实现高增益配置。不仅如此,OPA855的输入噪声仅为0.98nV/√Hz,能够尽可能降低来自于放大器的噪声影响,同时其压摆率达2750 V/μs,可实现更宽的电压摆幅。

 

image.png


贸泽备货的Texas Instruments OPA855在用作跨阻放大器 (TIA) 时的输入电容只有0.8pF,可以尽可能地降低电路的总输入电容,帮助设计出更高速的方案。该器件还通过独特的封装引脚排列方式简化了反馈网络的布局,并隔离输入和反馈连接之间产生的引脚间电容。借助这种设计,可以降低放大器反馈网络周围的总寄生电容,让高增益TIA设计能够实现高带宽。

 

用作TIA的OPA855可以配合时间数字转换器(如TI的TDC7201)用于光学飞行时间 (ToF) 系统中。此外,OPA855也可以配合差分输出放大器(如TI的THS4541或LMH5401),在高分辨率LIDAR系统中驱动高速模数转换器 (ADC)。

 

OPA855是TI超宽带运算放大器系列的新成员,该系列还推出了使用FET输入的OPA858和OPA859器件。该系列放大器非常适合用在高带宽跨阻电路,以及高速数据采集系统、低噪声前端等应用中。OPA855由专用于该器件的OPA855DSGEVM运算放大器评估模块和通用的DEM-OPA-WSON8-EVM无载评估模块提供支持。

 


关键字:运算放大器  TI 编辑:muyan 引用地址:http://news.eeworld.com.cn/dygl/ic474553.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:XP Power推出坚固外壳的超宽输入6/10W电源模块
下一篇:XP Power推出新款高效率适配器PSU产品

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

技术文章—基本运算放大器配置
目标: 在本实验中,我们将介绍一种有源电路——运算放大器(op amp),其某些特性(高输入电阻、低输出电阻和大差分增益)使它成为近乎理想的放大器,并且是很多电路应用中的有用构建模块。在本实验中,你将了解有源电路的直流偏置,并探索若干基本功能运算放大器电路。我们还将利用此实验继续发展使用实验室硬件的技能。 材料: ADALM1000硬件模块 无焊试验板和跳线套件 一个1 kΩ电阻 三个4.7 kΩ电阻 两个10 kΩ电阻 一个20 kΩ电阻 两个AD8541 器件(CMOS轨到轨放大器) 两个0.1 μΩ电容
发表于 2019-11-06
技术文章—基本运算放大器配置
技术文章:一种直接测量运算放大器输入差分电容的方法
简介 输入电容可能会成为高阻抗和高频运算放大器(op amp)应用的一个主要规格。值得注意的是,当光电二极管的结电容较小时,运算放大器的输入电容会成为噪声和带宽问题的主导因素。运算放大器的输入电容和反馈电阻在放大器的响应中产生一个极点,从而影响稳定性并增加较高频率下的噪声增益。因此,稳定性和相位裕量可能会降低,输出噪声可能会增加。实际上,以前的一些CDM(差模电容)测量技术依据的是高阻抗反相电路、稳定性分析以及噪声分析。这些方法可能会非常繁琐。 在诸如运算放大器之类的反馈放大器中,总有效输入电容由CDM与负输入共模电容(或对地的CCM–)并联组成。CDM难以测量的原因之一是运算放大器的主要任务是防止两个输入
发表于 2019-10-29
技术文章:一种直接测量运算放大器输入差分电容的方法
精密运算放大器助力工业电子控制精度
是运算放大器。这类要求的一个例子如下所示,解析器电路可用于工业机器人手臂等应用。(图1)在这个例子中,信号传递给运算放大器,从而驱动解析器旋转工业机器人的手臂。图1精确运动、旋转度或直线运动测量不仅要求精密,而且要求时间和温度的一致性。无论世界各地的工厂位置,由过程控制器发起的输入在所有极端环境都产生相同的运动很重要。同样重要的是,从交付的第一天起就有一致的移动,并在整个10多年的工业生命周期中提供一致的运动。安森美半导体提供两种精密运算放大器NCS21911和NCV21911,是极佳的选择,能在宽温度范围(-40℃至125 ℃)满足精确性能的要求,并在工业市场所需的多年运行中保持这种性能。精密输入偏置电压和精密输入偏置电压随温度漂移
发表于 2019-10-28
精密运算放大器助力工业电子控制精度
零漂移精密运算放大器:测量和消除混叠
零漂移精密运算放大器是专为由于差分电压小而要求高输出精度的应用设计的专用运算放大器。它们不仅具有低输入失调电压,还具有高共模抑制比(CMRR)、高电源抑制比(PSRR)、高开环增益和在宽温度及时间范围的低漂移(见表1)。这些特征使其非常适用于诸如低边电流检测和传感器接口、特别是具有非常小的差分信号的应用。   表1. 影响运算放大器准确度和精密度的关键参数。 虽然零漂移运算放大器制造商有时声称这些器件没有混叠效应,但实际上它们可能容易出现混叠,因为这些器件使用采样来最小化输入失调电压。因此,设计人员应测试其运算放大器电路的混叠效应。 经证实使用频谱或网络分析器的传统方法检测混叠
发表于 2019-08-15
零漂移精密运算放大器:测量和消除混叠
解析通用运算放大器:精密的准确性和成本效益
我们常发现客户将通用运算放大器如LM321用于电流检测应用。这是数十年来一直在使用的传统运算放大器之一。这些传统运算放大器成本低,用于无数应用。然而,有时同样的客户又向我们反馈,说这些运算放大器在其电流检测电路中出现故障。当我们查看退回的运算放大器单元时,它们按预期工作。那么问题出在哪里? 因为运算放大器是“通用的”并不意味着“可用于所有用途”。电流检测应用需要精密。电流检测通常用于电源管理和过流保护应用。想象一个不精确的世界。当您的手机电量快耗尽时,电量指示可能是8%。您可能设计在100A触发的过流电路,却发现保护电路在150A才启动,所有下游器件都被损坏。这就是通用和精密的区别。 一个精密运算放大器的关键是
发表于 2019-07-29
解析通用运算放大器:精密的准确性和成本效益
STM32 HAL库学习系列第11篇---定时器TIM---看门狗基本配置及使用
基本配置使用cube配置溢出时间记住准时喂狗独立看门狗: /* IWDG 1s 超时溢出 */  MX_IWDG_Init(IWDG_PRESCALER_64,625);  /* 启动独立看门狗 */  HAL_IWDG_Start(&hiwdg);   LED1_ON;   /* while部分是我们在项目中具体需要写的代码,这部分的程序可以用独立看门狗来监控   * 如果我们知道这部           分代码的执行时间,比如是50ms,那么我们可以设置独立看门狗的 &nb
发表于 2019-11-16
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved