如何用非耗散钳位电路提高反激式电源的效率

2019-09-17来源: EEWORLD关键字:反激式电源  钳位电路

在标准反激式电源转换器中,变压器的漏电感会在初级侧FET的漏极上产生电压尖峰。为防止这种尖峰,FET通常需要一个钳位保护,如图1所示。但钳位保护中的功率损耗限制了反激转换器的效率。在本电源技巧中,我们将研究反激式电源转换器的两种不同结构,它们使用非耗散钳位技术来回收泄漏能量并提高效率。


图片.png
图1大多数反激式转换器采用耗散钳位


耗散钳位中的功率损耗与存储与电感的能量有关。当FET导通时,变压器初级绕组中的电流逐渐增加到峰值电流。当FET关断时,能量通过变压器的次级绕组传递到输出端,泄漏能量不通过变压器铁心耦合,因此它可以保留在初级侧并流入钳位。

重要的是要了解不仅泄漏能量在钳位中消散,磁化能量的一部分也是如此。如功率提示#17中所述,将初级绕组电压钳制得远高于反射输出电压可以最大限度地减少钳位中燃烧的磁化能量。

双开关反激是反激式转换器的常见变体,可回收泄漏能量。图2是双开关反激的简化示意图。两个FET与它们之间的初级绕组串联连接,这两个FET同时开启或关闭。当它们接通时,初级绕组连接到输入端,并通电至峰值电流。当它们关闭时,次级绕组将磁化能量传递给输出端,泄漏能量通过D1和D2再循环回输入端。通过回收泄漏能量,双开关反激式电池的效率高于单开关耗散型开关。


图片.png
图2双开关反激回收钳位能量到输入


两个开关同时导通会抵消效率,因此传导损耗趋于增加,特别是在低输入电压应用中。幸运的是,两个FET的漏极——源极电压都会钳位到输入电压,因此与单开关反激式相比,您可以使用额定电压较低的FET。同时,钳位电压的能力在高输入电压应用中也是有利的。

效率增益与漏电感与磁化电感的比率有关,通常约为2%。回收泄漏能量除了提高效率之外还具有其他益处,例如在高功率反激式应用中(通常大于75W),耗散钳位中的损耗会产生热管理,双开关反激式完全消除了这种热源。

这种更高效率和改进的热性能的折衷是成本和复杂性的增加。不仅需要额外的FET;同时也需要高端FET的隔离驱动器。另外,需要设置变压器匝数比,使得输出电压小于最小输入电压。否则,输出电压将被钳位,变压器将无法正常复位。因此,双开关反激本质上限于最大50%的占空比。实际上,输出电压应该足够低于最小输入电压,以允许漏电感的快速复位。

图3中的电路显示了另一种回收泄漏能量的方法,但使用的是单开关反激式。这种非消耗性钳位技术并不是新的,但它也不为人所熟知。然而它提供了许多与双开关反激式相同的好处。


图片.png
图3一个简单的非耗散钳位添加到单开关反激式


实现此钳位需要在变压器的初级侧添加钳位绕组。该绕组必须具有与初级绕组相同的匝数。增加一个钳位电容,连接到FET的漏极。钳位电容的另一端通过二极管D1钳位到输入电压,并通过二极管D2钳位到钳位绕组。

钳位绕组和D2将钳位电容两端的电压限制为等于输入电压的最大值,在主回路周围应用基尔霍夫电压定律时很明显,如图4所示。请注意,两个初级绕组电压相互抵消,无论任何的极性或大小。只有在两个绕组上使用相同的匝数时,此方法才有效。

图片.png
图4钳位电容电压受输入电压的限制


要了解此钳位如何工作,请考虑FET关闭时会发生什么。当初级FET关断时,漏电感中的电流流过钳位电容并使二极管D1正向偏置。当D1导通时,漏电感将在其两端的电压等于输入电压和反射输出电压之间的差值。一旦漏电感中的电流降至零,D1就会关闭。传递到钳位电容器的泄漏能量暂时使钳位电容器上的电压略高于输入电压。当D1关断时,D2钳位通过变压器绕组中的耦合有效地将存储的电荷传输到输出侧。

该钳位电路需要更少的元件,并且比双开关反激式元件便宜。就像双开关反激式一样,它可以提高几个百分点的效率,并消除与耗散泄漏能量相关的热问题。该钳位电路还将占空比限制在最大值的50%。需要考虑的是电路需要一个更高电压的FET,其额定输入电压必须超过输入电压的两倍。与双开关反激相比,FET的漏极上的较高电压也可能对电磁干扰提出更多挑战。

有源钳位反激是另一种版本的反激式回收漏电能量,同时可以提供零电压开关。有源钳位反激更复杂,需要专用控制器。下次设计高功率反激电源时,请考虑采用非耗散钳位来提高效率并保持良好散热。

关键字:反激式电源  钳位电路 编辑:冀凯 引用地址:http://news.eeworld.com.cn/dygl/ic474851.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:Vicor将在北京、深圳和上海举办高性能电源转换技术研讨会
下一篇:Vicor分比式架构电源助力Phasor实现超高密度天线

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

WEBENCH设计工具来创建一个电源
开关稳压器的占空比经常被认为只与输入和输出电压成比例。但是,当我们仔细查看计算结果时,我们会发现,这个值也反映出了电路损耗。选择会带来更多损耗的组件,比如说具有较高DCR的电感器,会导致占空比增加(对于一个降压转换器是如此),有可能导致其它组件的额外效率损失。当使用TI的WEBENCH® 电源设计工具来创建一个电源时,此模型的计算结果并不依靠基本理想方程式,而是使用详细的计算结果,为你显示组件损耗与占空比小幅变化之间的交互作用。为了对这一点有一个深入的了解,我们来看一看图1中所示的一个降压转换器示例。图1.异步降压转换器在一个降压转换器中,占空比D被定义为D = Ton/Ts在这里Ts = 1/开关频率
发表于 2018-05-29
电源小贴士#78:同步整流可改善反激式电源的交叉调整率
当选择一个可从单电源产生多输出的系统拓扑时,反激式电源是一个明智的选择。由于每个变压器绕组上的电压与该绕组中的匝数成比例,因此可以通过匝数来轻松设置每个输出电压。在理想情况下,如果调节其中一个输出电压,则所有其他输出将按照匝数进行缩放,并保持稳定。然而,在现实情况中,寄生元件会共同降低未调节输出的负载调整。在本电源小贴士中,我将进一步探讨寄生电感的影响,以及如何使用同步整流代替二极管来大幅提高反激式电源的交叉调整率。例如,一个反激式电源可分别从一个48V输入产生两个1 A的12V输出,如图1的简化仿真模型所示。理想的二极管模型具有零正向压降,电阻可忽略不计。变压器绕组电阻可忽略不计,只有与变压器引线串联的寄生电感才能建模。这些电
发表于 2017-12-27
电源小贴士#78:同步整流可改善反激式电源的交叉调整率
修复可产生音频噪声的反激式电源
尽管开关电源的工作频率远超过人类的听力范围,但它们在特定的负载条件下可以产生音频噪声。音频噪声的可能来源多种多样。噪声可以是设计缺陷(如振荡输出电压)导致,或者由电容或变压器等噪声元件导致。在有些情况下,所听到的尖锐刺耳的噪鸣或嘶嘶声可能就像风扇在异常频率下出现的摇荡,或者由于电源靠近外部EMI源(荧光灯或电源插排)所导致。本文将探讨反激式电源中最常见的噪声来源,并介绍可能的解决方案。下文中描述的所有操作程序都可以使用一个可程控交流电源供应器或自耦变压器和一个电子负载来完成。请记住,在有些情况下,电源所产生的噪声水平可能非常低,如果该电源将在密闭壳体内使用,那么音频噪声就不会构成问题。可能的噪声源反激式电源中最常见的噪声源是噪声
发表于 2013-08-04
修复可产生音频噪声的反激式电源
用于音频放大器的多路输出反激式电源
传统的音频系统通常使用基于线性变压器的电源,不但体积笨重,而且随着原材料价格的飞涨,制造成本日益昂贵。本文将为您介绍使用Power Integrations PKS607YN设计的一款75 W/126 W峰值输出电源。PeakSwitch产品系列为高质量的音频及视频产品电源提供出色解决方案,为高动态内容的音乐提供稳定的功率输出。降低了THD(总谐波失真),并极大地提高了音频的质量。如下介绍的设计使用一个PeakSwitch器件设计一个多路输出的电源,并使用一个合适的磁放大器控制电路来确保两个主输出上的交叉稳压。 电源电路   图1中所示的通用输入电源有多路输出:±26 VDC、±15 VDC和+5 VDC。±26 V输出都可以提供
发表于 2013-06-17
用于音频放大器的多路输出反激式电源
准谐振反激式电源架构及应用
  低成本和高可靠性是离线电源设计中两个最重要的目标。准谐振 (Quasi resonant) 设计为设计人员提供了可行的方法,以实现这两个目标。准谐振技术降低了MOSFET的开关损耗,从而提高可靠性。此外,更软的开关改善了电源的EMI特性,允许设计人员减少使用滤波器的数目,因而降低成本。本文将描述准谐振架构背后的理论及其实施,并说明这类反激式电源的使用价值。   基本知识   现有的L-C 储能电路正战略性地用于PWM电源中。结果是L-C 储能电路的谐振效应能够“软化”开关器件的转换。这种更软的转换将降低开关损耗及与硬开关转换器相关的EMI。由于谐振电路仅在相当于其它传统方波转换器的开关转换瞬间才起作用,故而有 “准谐振
发表于 2013-01-19
准谐振反激式电源架构及应用
反激式电源中MOSFET的钳位电路
被称为变压器漏感。开关断开后,漏感能量不会传递到次级,而是在变压器初级绕组和开关之间产生高压尖峰。此外,还会在断开的开关和初级绕组的等效电容与变压器的漏感之间,产生高频振铃(图1)。 图1:漏感产生的漏极节点开关瞬态   如果该尖峰的峰值电压超过开关元件(通常为功率MOSFET)的击穿电压,就会导致破坏性故障。此外,漏极节点的高幅振铃还会产生大量EMI。对于输出功率在约2W以上的电源来说,可以使用钳位电路来安全耗散漏感能量,达到控制MOSFET电压尖峰的目的。   钳位的工作原理   钳位电路用于将MOSFET上的最大电压控制到特定值,一旦MOSFET电压达到阈值,所有额外的漏感能量都会转移到钳位电路,或者先储存起来慢慢耗散
发表于 2012-11-18
反激式电源中MOSFET的钳位电路
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved