TDK TMR传感器解决方案可实现电动汽车电池超高精度监测

2020-05-13来源: TDK关键字:TMR  传感器  电动汽车  电池

image.png

电池电量指示仪表是混合动力电动汽车(xEV)的一项基本功能配置。电池监测功能可以准确测量剩余电池容量,有助于精确估算行驶距离,随着电动汽车耗电量的增加,未来将需要更精确的电池监测功能。而电流传感器就是影响电动汽车电池监测性能的元件之一。


电池监测面临的挑战对于避免“电量耗尽”至关重要


通常而言,当电池耗尽时,电动汽车就无法继续行驶。尤其在高速公路上,能否避免电量耗尽非常关键,否则可能会导致重大交通事故,不仅危及人身安全,还会造成严重的交通堵塞。为了避免发生这种情况,汽车制造商和交通基础设施公司提供了各种服务支持,包括向驾驶员显示精确的电池电量消耗估算值,以及提供有关电池充电服务区和停车区的信息。随着未来电动汽车的普及和电力供应基础设施的发展,这些配套服务也将会进一步加强。

为了有效估算电池消耗情况,高精度电池监测至关重要。如果无法实现对剩余电池容量的精确测量,就很难获得有关剩余可行驶距离的可靠信息。此外,提高电池监测的精度不仅可以检查与剩余电池容量有关的电池充放电状态,还可以避免发生损害电池性能的情况,从而有助于延长电池使用寿命。


电池监测


电池监测


电池监测解决方案可检测高达1200 A的大电流,且误差小于1%


在用于电池监测的各类电流传感器中*1,通常采用闭环电流传感器进行测量。闭环电流传感器有一个由线圈组成的大磁芯,可产生磁通量用于感测。但是,采用这种传感器会影响电池监测设计的灵活性,并且无法减轻车辆重量。


TDK开发的新型闭环隧道磁阻效应(TMR)*2电流传感器可解决这些问题,其中使用了无芯传感器。TMR电流传感器的磁检测部分(由TMR元件、线圈和电阻组成)和专用集成电路(ASIC)*3均集成在一个封装中,能够采用非接触方式高精度测量高达1200 A的大电流,且误差小于1%(满量程)。此外,它的体积小,功耗低,可以实现前所未有的高精度电池监测。


传统闭环传感器与TMR电流传感器


传统闭环传感器与TMR电流传感器

通过将TMR元件、线圈、磁检测部分和ASIC集成于单封装中,减小了尺寸和功耗。


这款新型TMR电流传感器通过充分运用TDK集团的TMR元件技术和TDK-Micronas的磁传感器设计技术开发而成,展现了其强大的技术实力。TMR电流传感器(产品名称:CUR 423x)将支持高精度电池监测,并进一步推动电动汽车的普及。


磁传感器元件的特性比较

磁传感器元件的特性比较

TMR元件产生的输出(即该元件检测到磁场强度和变化并将其转化为电信号之后输出的值)比AMR(各向异性磁阻)元件和GMR(巨磁阻)元件等其他传感器元件产生的输出更高。


TMR电流传感器CUR 423x

TMR电流传感器CUR 423x

CUR 423x是一种非接触式磁场传感器,可用于汽车和工业领域的高直流电流和高交流电流测量。这是首个利用TDK TMR技术开发的Micronas品牌产品。

术语


  • 电流传感器的类型:电流传感器有多种类型,包括“分流电阻型”:使电流通过小阻值电阻并测量两端之间的电压来获得电流值;以及“闭环型”:反馈电流通过第二绕组,使输入电流产生的磁场恒定为零。


  • TMR(隧道磁阻)是一种磁改变通过绝缘膜的隧穿电流的现象;应用该机制的元件具有较高的磁阻率(磁阻率体现灵敏度),并且能够比传统元件更准确地读取高密度信号。


  • ASIC(专用集成电路)是指为信号处理等特定应用而设计的集成电路,其中集成多种功能电路。


关键字:TMR  传感器  电动汽车  电池 编辑:baixue 引用地址:http://news.eeworld.com.cn/dygl/ic496906.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:Qorvo推出USB Type-C车载快充PMIC
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

TDK TMR传感器可实现电动汽车电池的超高精度监测
,这些配套服务也将会进一步加强。为了有效估算电池消耗情况,高精度电池监测至关重要。如果无法实现对剩余电池容量的精确测量,就很难获得有关剩余可行驶距离的可靠信息。此外,提高电池监测的精度不仅可以检查与剩余电池容量有关的电池充放电状态,还可以避免发生损害电池性能的情况,从而有助于延长电池使用寿命。在用于电池监测的各类电流传感器中*1,通常采用闭环电流传感器进行测量。闭环电流传感器有一个由线圈组成的大磁芯,可产生磁通量用于感测。但是,采用这种传感器会影响电池监测设计的灵活性,并且无法减轻车辆重量。TDK开发的新型闭环隧道磁阻效应(TMR)*2电流传感器可解决这些问题,其中使用了无芯传感器。TMR电流传感器的磁检测部分(由TMR元件、线圈
发表于 2020-04-23
TDK TMR传感器可实现电动汽车电池的超高精度监测
TDK TMR传感器解决方案可实现电动汽车电池超高精度监测
监测设计的灵活性,并且无法减轻车辆重量。TDK开发的新型闭环隧道磁阻效应(TMR)*2电流传感器可解决这些问题,其中使用了无芯传感器。TMR电流传感器的磁检测部分(由TMR元件、线圈和电阻组成)和专用集成电路(ASIC)*3均集成在一个封装中,能够采用非接触方式高精度测量高达1200 A的大电流,且误差小于1%(满量程)。此外,它的体积小,功耗低,可以实现前所未有的高精度电池监测。传统闭环传感器与TMR电流传感器通过将TMR元件、线圈、磁检测部分和ASIC集成于单封装中,减小了尺寸和功耗。这款新型TMR电流传感器通过充分运用TDK集团的TMR元件技术和TDK-Micronas的磁传感器设计技术开发而成,展现了其强大的技术实力。TMR
发表于 2020-03-27
TDK TMR传感器解决方案可实现电动汽车电池超高精度监测
PIC18f2580下TMR0定时器初值设置方法
用的时钟源是内部的4MHZ,那么每条指令的执行时间就是 1us,设Timer0的预分频系数是1:256,TMR0的初值是6,那么定时时间为: 256×(256-6)×1us=64ms256×(256-6)×(1/4M*4)=64ms即 (4M/4)/256/250=16HZ。    参见: bit 5 T0CS:Timer0 Clock Source Select bit1 = Transition on T0CKI pin input edge0 = Internal clock (F OSC /4)源程序:#include <pic18.h> void
发表于 2020-03-11
PIC单片机之定时器(TMR0)
频器假设预分频器设置成2分频,定时器就 每隔2个指令周期定时器加一。如果预分频器设置成4分频,定时器就 每隔4个指令周期定时器加一,以此类推。定时器中断标志位如: TMR0 这个是8位的定时器,也就是8位的寄存器。8位的寄存器能代表的数值为0~255.也就是说定时器可以从0开始加一直加到255.到255后再加一就又变成0。此时TMR0定时器中断标志位 (TMR0IF)变成 1.(如果中断没有开启,并不执行中断程序。) 到底从时钟频率一直到定时器中断溢出之间是什么关系呢?下面我画了一个流程图我们用频率的方式来理解这一切。假设时钟频率是4MHz ,定时器预分频值为2,定时器初始值为0.1、首先4MHz 的时钟 4分频后变成
发表于 2020-01-30
PIC单片机之定时器(TMR0)
pic16f887 TMR0计时器讲解及准确定时程序
一、前言TMR0 计时器实际上 TMR0 计时器的应用很广。很少程式不用到它。它非常方便,而且很容易用来撰写产生任意期 间的脉冲的程式或副程式(subroutine)、测量时间,或是计数外部脉冲 (事件),几乎没有什么限制。TMR0 计时器模组是 8 位元的计时器/计数器,具有下列特性:● 8 位元计时器/计数器;● 8 位元 prescaler (与 Watchdog timer 共享);● 可程式的内部或外部时脉来源 (Programmable internal or external clock sources);● 溢位中断 (Interrupt on overflow); 及● 可程式选择的外部时脉边缘
发表于 2019-11-16
pic16f887 TMR0计时器讲解及准确定时程序
宝马自动驾驶计算架构剖析:为何EyeQ5姗姗来迟
的 Aurix MCU 当然还在。 传感器方面则增加一个前向激光雷达,应该是法雷奥 Scala 二代。L4 用一个 24 核的至强处理器代替 L3 的两片 8 核处理器,又增加一片开放版高端 EyeQ5。传感器方面增加侧方和后方激光雷达。 L2 系统称之为 mPAD,L3 为 hPAD,L4 为 uPAD。在 2018 年底宝马曾经公开展示过这些控制器盒子。L3 和 L4 系统都是水冷。   上图为安波福为宝马打造的 mPAD 上图为 mPAD 内部拆解图,英特尔 CPU 在背面不过按照采访 Simon Fürst 的文章,则和宝马提供的路线图大相径庭。Theplatform’s
发表于 2020-05-08
宝马自动驾驶计算架构剖析:为何EyeQ5姗姗来迟
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved