一文了解控制系统及DC-DC转换器控制环路设计推荐

最新更新时间:2023-01-30来源: EEWORLD作者: ADI应用工程师Yaxian Li关键字:控制系统  DC-DC  转换器  环路设计  ADI 手机看文章 扫描二维码
随时随地手机看文章

一文了解控制系统及DC-DC转换器控制环路设计推荐


环路补偿是设计DC-DC转换器的关键步骤。如果应用中的负载具有较高的动态范围,设计人员可能会发现转换器不再能稳定的工作,输出电压也不再平稳,这是由于控制环路稳定性或带宽带来的影响。了解环路补偿理论有助于设计人员处理典型的板级电源应用问题。


本文分为三个部分。前两部分讨论控制系统理论、通用降压DC-DC转换器拓扑以及如何设计DC-DC控制环路。在第三部分,将以ADI MAX25206为例说明如何应用控制理论来评估和设计DC-DC控制环路。


控制系统理论简介


在自然界中,控制系统无处不在。空调控制室内温度,驾驶员控制汽车行驶的方向,控制煮饺子时的水温,诸如此类。控制是指对生产过程中的一台设备或一个物理量进行操作,使一个变量保持恒定或沿预设轨迹运动的动态过程。通常,自然界中的系统是非线性的,但微观过程可以被视为线性系统。在半导体领域,微电子学会被视为一个线性系统。


可实现自动控制的系统是闭环系统,反之则是开环系统。开环系统的特点是系统的输出信号不影响输入信号。就像在图1中,G(s)是系统在复频域的传递函数。

 

image.png

图1.开环系统


 image.png

VI是输入信号,VO是复频域的输出信号。图2中的闭环系统具有从输出到输入的反馈路径。系统的输入节点将是输入信号和反馈信号之差。

 

image.png

图2.闭环系统


当控制器迭代直到输入信号等于反馈信号时,控制器达到稳态。使用数学方法可以得到以下闭环系统方程:

 image.png


然后简化方程如下:

 image.png

 image.png


其分母相位(式4)既是开环转换函数(也称为环路增益)。其增益幅度表明反馈的强度,其带宽是闭环系统的可控带宽。当然,其相移也会叠加。应该知道,如果环路增益大于0dB,同时相移为180°,则控制环路将以正反馈工作并形成一个振荡器。这是稳定性设计的一个关键。 设计人员应确保相位裕量和增益裕量在安全范围内,否则整个系统环路将开始自振荡。


通用降压DC-DC转换器拓扑

接下来介绍降压DC-DC转换器的拓扑结构和控制环路。


 image.png

图3.降压DC-DC模块


图3显示了典型降压转换器原理图,其简化为一个交流小信号电路。它包括三级:斩波调制器、输出LC滤波器和补偿网络。每一级都有自己的转换函数。这三级构成整个控制环路。比较器和半桥构成斩波调制器。比较器输入信号来自振荡器和补偿网络。补偿网络在 闭环反馈路径中实现。调制器的交流小信号增益为

 image.png


其中VPP为振荡器三角波的峰峰值电压。VCC为半桥的输入功率。在控制理论中,小信号增益既是转换函数。可以看到,调制器没有相移,只有幅度增益。LC滤波器转换函数为

 image.png


其中L和C分别为电感和电容。这是一种理想状态。通常,电路中存在寄生参数,如图4所示。

 

image.png

图4.具有寄生参数的LC滤波器


DCR是电感L的直流等效电阻。ESR是输出电容的等效串联电阻。因此,LC滤波器的转换函数为

 image.png


显然,ESR会为控制环路产生一个零点。当ESR太大而无法忽略时,设计人员应考虑ESR可能引起的稳定性问题。补偿网络用于消除寄生效应并改善环路响应。

 

image.png

图5.II型补偿拓扑


降压DC-DC模块展示了II型补偿网络。这种补偿电路会提供一个零点和两个极点。

 image.png


还有I型和III型补偿电路。

 

image.png

图6.I型补偿拓扑


 

I型只是一个积分节点。它是一个最小相位系统。

 

image.png

图7.III型补偿拓扑


III型转换函数类似于II型。

 image.png


可以看到,III型转换函数更复杂。它有两个零点和三个极点。在图7中,运算放大器(OPA)用于误差放大。运算跨导放大器(OTA)也可用于环路中的误差放大。

 

image.png

图8.带OTA的II型补偿拓扑


其传递函数类似于使用OPA拓扑电路的传递函数。输出电压误差信号先由OTA放大并转换为电流信号,再由补偿网络转换为电压控制信号。在所选择的任何类型拓扑或放大器中,零点和极点必须位于适当的频率处。


如何设计DC-DC控制环路?


下面看看采用II型环路补偿的降压DC-DC转换器的整个开环转换函数。

 image.png


调制器和LC滤波器的转换函数无法轻易改变,因此只能更改补偿网络。以II型拓扑为例。II型转换函数有两个极点和一个零点,如下所示。

Fz = 1/RzCz;

Fp1 = 0;

Fp2 = R1(Cz + Cp)/R1RzCpCz;


极点和零点位置由环路增益和环路相移确定。正极点会给波特图中的增益曲线增加–20dB/dec斜率,并会给波特图中的环路相位曲线增加–90°相移。相反,正零点会给增益曲线增加20dB/dec斜率,并会给环路相位曲线增加90°相移。可以看到,II型补偿环路有两个极点和一个零点,而带有寄生效应的LC滤波器也有两个极点和一个零点。寄生极点可能会迫使环路增益交越点(开环图与轴相交的点;此处增益为0dB)处的斜率高达-40dB/dec,甚至更高。这意味着系统的相移将达到180°(相位裕量将达到0°),会引起自振荡。设计人员应该避免这种风险。根据经验,应确保环路增益穿越频率处的斜率为–20dB/dec。为了解决这个问题,设计人员只能更改补偿网络。更改Rz或Cz可以改变零点的位置,更改Cp可以改变次极点的位置。通常,寄生极点和零点位于非常高的频率,因此将Fp2放置在比Fz稍远的位置,迫使寄生极点和零点低于0 dB。Fz和Fp2都是决定环路带宽的重要因素。

 

image.png

图9.II型波特图


通过调整极点和零点的位置,可以改变环路的频率响应和相位响应以确保增益或相位裕度。 因此就可以在环路带宽和稳定性裕量之间取得平衡。例如,MAX25206的原理图如图10所示。在该电路中,VOUT = 5V,ILOAD = 3.5A,因此RLOAD = 1.43Ω。

 

image.png

图10.MAX25206典型原理图


其补偿网络为II型网络,Cp = 0pF(根据式8)。第二个极点位于无穷大频率,可以从R5和C2计算出第一个零点,Fz = 1/(4.7nF × 18.2kΩ) = 11.69kHz。在输出LC滤波器中, 可以通过转换函数式7从ESR和输出电容得知零点在Fz = 16.4MHz,复极点在Fp1 = 1.8kHz–37.6kHz和Fp2 = 1.8kHz + 37.6kHz。可以预见,Gf增益将在1.8kHz处达到最大点。当频率大于1.8kHz时,Gf增益会迅速下降。补偿零点Fz是对环路增益降低的补偿。此外,应该知道,如果环路增益大于0dB,LC滤波器将在37.6kHz处谐振。设计人员不应将Fz放置得太接近1.8kHz,以确保环路增益在37.6kHz时不会高于0dB。AC环路仿真结果如图11所示。

 

image.png

图11.MAX25206 AC环路仿真


此外,III型补偿网络对于提供补偿更具潜力。当然,要评估一个系统,不仅可以使用开环转换函数和波特图,还可以观察闭环转换函数的根轨迹是否在左半平面,并分析时域微分方程。但就方便性而言,观察波特图的开环转换函数是实现稳定电源系统设计的最常见、最简单的方法。其他类型DC-DC拓扑的补偿环路、补偿方法和原理是相同的。 唯一区别在于调制器,也就是环路转换函数的增益。


其他补偿网络拓扑示例


除了不同类型的DC-DC拓扑,还有采用不同方案的控制环路。与DC-DC转换器一样,MAX20090 LED控制器由电流控制环路组成。转换器检测输出电流,并将其反馈回控制环路以达到预期值。另一个例子是MAX25206降压控制器,它具有限制峰值或平均电流的功能。该器件检测输出电压和平均电流并反馈回来。它是一款双闭环控制器。通常,电流控制环路在内环,电压控制环路在外环。电流环路的带宽(即响应速度)大于电压环路的带宽,因此它能实现限流。第三个例子是MAX1978温度控制器。它包含一个驱动热电冷却器(TEC)的H桥。不同电流的方向将决定TEC是加热还是冷却模式。反馈信号就是TEC的温度。这种控制环路会迫使输出TEC的温度达到预期温度。


结论


无论何种形式的电路拓扑,以自动控制为目标的模拟电路理论基础是ADI在本文所讨论的。设计人员的目标是实现更高的带宽和更健壮的稳定性,同时确保环路带宽和稳定性达到平衡。


关于ADI公司


Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。


关于作者


Yaxian Li是ADI公司培训和技术服务团队的应用工程师。Yaxian于2020年加入Maxim Integrated(现为ADI公司一部分),于2018年获得杭州电子大学电气工程和自动化学士学位。


关键字:控制系统  DC-DC  转换器  环路设计  ADI 编辑:张工 引用地址:一文了解控制系统及DC-DC转换器控制环路设计推荐

上一篇:ROHM开发出输出电压更稳定且非常适用于冗余电源的小型一次侧LDO
下一篇:开关模式电源电路板布局的黄金法则

推荐阅读

电池快速充电指南——第1部分
电池快速充电指南——第1部分摘要虽然更高的电池容量延长了设备的使用时间,但如何缩短充电时间,这给设计人员带来了额外的挑战。快速充电适用于广泛的设备,包括消费电子、医疗和工业应用。本文分为两部分,概要介绍与实现电池快速充电功能相关的挑战。第1部分探讨在主机和电池包之间分隔充电器和电量表,以提高系统的灵活性、尽可能降低功耗,并提升用户的总体体验。此外,还介绍设备包含的监测功能,确保实现安全充电和放电。第2部分探讨使用并联电池实现快速充电系统。简介在如今这个移动设备当道的时代,电池寿命是影响用户体验的主要因素之一。在设备内部集成省电技术非常重要,但这只是解决方案的一部分。随着移动设备的功能不断增多,其对电力的要求也不断提高,原始设备制造商
发表于 2023-03-29
电池快速充电指南——第1部分
基于51单片机的电梯控制系统设计
一.系统概述系统使用的模块有AT89C51单片机+LCD1602显示屏+ADC0832+按键+小灯。本次设计的智能路灯控制系统以AT89C51单片机为控制核心,使用LCD1602显示屏显示ADC采集回来的光照强度的数字电压信号,系统程序内设置光照强度阈值,在默认状态下为自动模式,此时调节电位器就能实现光照强度的调节,按下自动按键就会切换到手动模式,此时按下手动开和手动关按键就能控制小灯的亮灭。二.仿真概述1.使用LCD1602显示光照强度电压信号值。2.为电梯的内外都设置了上下楼按键,按下就开始执行上下楼程序,左侧的指示灯会根据电梯上行和下行高亮,到达指定楼层后状态灯会直接亮起。3.当按下上下楼按键后电机模拟电梯的运转,上楼电机正转
发表于 2023-03-28
基于51单片机的电梯<font color='red'>控制系统</font>设计
基于51单片机的智能灯光控制系统设计
一.系统概述系统使用的模块有AT89C51单片机+LCD1602显示屏+光敏电阻模块+ADC0832+小灯。本设计采用51单片机为核心控制,使用LCD1602显示采集到的关照强度,光照强度以模拟电压信号的形式进行展现,通过ADC将模拟信号转换为数字电压信号,单片机会根据光强的电压信号值进行判定,如果光强电压值小于设置阈值则小灯就会被点亮。二.仿真概述1.通过LCD1602将数模转换后的光照强度电压信号值和阈值进行显示。2.通过调节电位器来模拟光照强度的变化,光强的变化会在显示屏上表现出来。3.当检测到光照强度低于设定阈值小灯就会亮起。三.程序设计使用Keil51进行程序设计,打开Proteus时程序是默认烧录的状态,如果没有烧录点击
发表于 2023-03-28
基于51单片机的智能灯光<font color='red'>控制系统</font>设计
半个小时搞定——stm32 之 DAC
DAC 可谓是 stm32 继按键最简单的一个寄存器配置吧,花了半个小时搞定!DAC 主要特征● 2 个 DAC 转换器:每个转换器对应 1 个输出通道● 8 位或者 12 位单调输出● 12 位模式下数据左对齐或者右对齐● 同步更新功能● 噪声波形生成● 三角波形生成● 双 DAC 通道同时或者分别转换● 每个通道都有 DMA 功能● 外部触发转换看了这些东西,貌似很激动的样子,我们下面就开始配置 DAC 外设了先直接看看寄存器:位 12 DMAEN1:DAC 通道 1 DMA 使能(DAC channel1 DMA enable 该位由软件设置和清除。0:关闭 DAC 通道 1 DMA 模式;1:使能 DAC 通道 1 DMA
发表于 2023-03-28
自适应巡航控制系统的工作原理及应用
一、自适应巡航控制系统的定义自适应巡航控制(ACC)系统:在汽车行驶过程中,车距传感器持续扫描汽车前方道路,同时轮速传感器采集车速信号;当前汽车与前方车辆之间的距离小于或大于安全车距时,ACC控制单元通过与制动系统、发动机控制系统协调动作,改变制动力矩和发动机输出功率,对汽车行驶速度进行控制,始终保持安全车距行驶
发表于 2023-03-27
自适应巡航<font color='red'>控制系统</font>的工作原理及应用
PLC控制系统接线和变频器干扰抑制
注意电源安装PLC系统的电源有两类:外部电源和内部电源。外部电源是用来驱动PLC输出设备(负载)和提供输入信号的,又称用户电源,同一台PLC的外部电源可能有多规格。外部电源的容量与性能由输出设备和PLC的输入电路决定。由于PLC的I/O电路都具有滤波、隔离功能,所以外部电源对PLC性能影响不大。因此,对外部电源的要求不高。内部电源是PLC的工作电源,即PLC内部电路的工作电源。它的性能好坏直接影响到PLC的可靠性。因此,为了保证PLC的正常工作,对内部电源有较高的要求。一般PLC的内部电源都采用开关式稳压电源或原边带低通滤波器的稳压电源。在干扰较强或可靠性要求较高的场合,应该用带屏蔽层的隔离变压器,对PLC系统供电。还可以在隔离变压
发表于 2023-03-27
PLC<font color='red'>控制系统</font>接线和变频器干扰抑制
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved