如何通过最小化热回路PCB ESR和ESL来优化开关电源布局

最新更新时间:2023-01-31来源: EEWORLD作者: ​ADI产品应用高级工程师Jingjing Sun,ADI产品应用经理Ling Jiang,ADI产关键字:开关电源  热回路  PCB 手机看文章 扫描二维码
随时随地手机看文章

如何通过最小化热回路PCB ESR和ESL来优化开关电源布局


问题:


能否优化开关电源的效率?


答案:


当然可以,最小化热回路PCB ESR和ESL是优化效率的重要方法。


简介


对于功率转换器,寄生参数最小的热回路PCB布局能够改善能效比,降低电压振铃,并减少电磁干扰(EMI)。ADI将在本文讨论如何通过最小化PCB的等效串联电阻(ESR)和等效串联电感(ESL)来优化热回路布局设计。文中研究并比较了影响因素,包括解耦电容位置、功率FET尺寸和位置以及过孔布置。通过实验验证了分析结果,并总结了最小化PCB ESR和ESL的有效方法。


热回路和PCB布局寄生参数


开关模式功率转换器的热回路是指由高频(HF)电容和相邻功率FET形成的临界高频交流电流回路。它是功率级PCB布局的最关键部分,因为它包含高dv/dt和di/dt噪声成分。设计不佳的热回路布局会产生较大的PCB寄生参数,包括ESL、ESR和等效并联电容(EPC),这些参数对功率转换器的效率、开关性能和EMI性能有重大影响。

 

image.png

图1.带热回路ESR和ESL的降压转换器


图1显示了同步降压DC-DC转换器原理图。热回路由MOSFET M1和M2以及解耦电容CIN形成。M1和M2的开关动作会产生高频di/dt和dv/dt噪声。CIN提供了一个低阻抗路径来旁路高频噪声成分。然而,器件封装内和热回路PCB走线上存在寄生阻抗(ESR、ESL)。高di/dt噪声通过ESL会引起高频振铃,进而导致EMI。ESL中存储的能量在ESR上耗散,导致额外的功率损耗。因此,应尽量减小热回路PCB的ESR和ESL,以减少高频振铃并提高效率。


准确提取热回路的ESR和ESL,有助于预测开关性能并改进热回路设计。器件的封装和PCB走线均会影响回路的总寄生参数。本文主要关注PCB布局设计。有一些工具可帮助用户提取PCB寄生参数,例如Ansys Q3D、FastHenry/FastCap、StarRC等。Ansys Q3D之类的商用工具可提供准确的仿真,但通常价格昂贵。FastHenry/FastCap是一款基于部分元件等效电路(PEEC)数值建模的免费工具1 ,可以通过编程提供灵活的仿真来探索不同的版图设计,但需要额外的编程。FastHenry/FastCap寄生参数提取的有效性和准确性已经过验证,并与Ansys Q3D进行了比较,结果一致2,3 。在本文中,FastHenry用作提取PCB ESR和ESL的经济高效的工具。


热回路PCB的ESR和ESL与解耦电容位置的关系


本部分基于ADI的LTM4638 µModule®稳压器演示板DC2665A-B来研究CIN位置的影响。LTM4638是一款集成式20VIN、15A降压型转换器模块,采用小型6.25mm × 6.25mm × 5.02mm BGA封装。它具有高功率密度、快速瞬态响应和高效率特性。模块内部集成了一个小的高频陶瓷CIN,不过受限于模块封装尺寸,这还不够。图2至图4展示了演示板上的三种不同热回路,这些热回路使用了额外的外部CIN。第一种是垂直热回路1(图2),其中CIN1放置在μModule稳压器下方的底层。µModule VIN和GND BGA引脚通过过孔直接连接到CIN1。这些连接提供了演示板上的最短热回路路径。第二种热回路是垂直热回路2(图3),其中CIN2仍放置在底层,但移至μModule稳压器的侧面区域。其结果是,与垂直热回路1相比,该热回路添加了额外的PCB走线,预计ESL和ESR更大。第三种热回路选项是水平热回路(图4),其中CIN3放置在靠近μModule稳压器的顶层。µModule VIN和GND引脚通过顶层铜连接到CIN3,而不经过过孔。然而,顶层的VIN铜宽度受其他引脚排列的限制,导致回路阻抗高于垂直热回路1。表1比较了FastHenry提取的热回路 PCB ESR和ESL。正如预期的那样,垂直热回路1的PCB ESR和ESL最低。

 

image.png

图2.垂直热回路1:(a)俯视图和(b)侧视图


image.png

图3.垂直热回路2:(a)俯视图和(b)侧视图


 image.png

图4.水平热回路:(a)俯视图和(b)侧视图


表1.使用FastHenry提取的不同热回路的PCB ESR和ESL

image.png


为了通过实验验证不同热回路的ESR和ESL,ADI测试了12V转1V CCM运行时演示板的效率和VIN交流纹波。理论上,ESR越低,则效率越高,而ESL越小,则VSW振铃频率越高,VIN纹波幅度越低。图5a显示了实测效率。垂直热回路1的效率最高,因为其ESR最低。水平热回路和垂直热回路1之间的损耗差异也是基于提取的ESR计算的,这与图5b所示的测试结果一致。图5c中的VIN HF纹波波形是在CIN上测试的。水平热回路具有更高的VIN纹波幅度和更低的振铃频率,因此验证了其回路ESL高于垂直热回路1。另外,由于回路ESR更高,因此水平热回路的VIN纹波衰减速度快于垂直热回路1。此外,较低的VIN纹波降低了EMI,因而可以使用较小的EMI滤波器。

 

image.png

图5.演示板测试结果:(a)效率,(b)水平回路与垂直回路1之间的损耗差异,(c) 15 A输出时M1导通期间的VIN纹波


热回路PCB ESR和ESL与MOSFET尺寸和位置的关系


对于分立式设计,功率FET的布置和封装尺寸对热回路ESR和ESL也有重大影响。本部分ADI对使用功率FET M1和M2以及解耦电容CIN的典型半桥热回路进行了建模和研究。图6比较了常见功率FET封装尺寸和放置位置。表2显示了每种情况下提取的ESR和ESL。

 

image.png

图6.热回路PCB模型:(a) 5mm × 6mm MOSFET,直线布置;(b) 5mm × 6mm MOSFET,以90°形状布置;(c) 5mm × 6mm MOSFET,以180°形状布置;(d) 两个并联的3.3mm × 3.3mm MOSFET,以90°形状布置;(e) 两个并联的3.3mm × 3.3mm MOSFET,以90°形状布置,带有接地层;(f) 对称的3.3mm × 3.3mm MOSFET,位于顶层和底层,以90°形状布置。


表2.对于不同器件形状和位置,使用FastHenry提取的热回路PCB ESR和ESL image.png


情况(a)至(c)展示了三种常见功率FET布置,其中采用5mm × 6mm MOSFET。热回路的物理长度决定了寄生阻抗。与情况(a)相比,情况(b)中的90°形状布置和情况(c)中的180°形状布置的回路路径更短,导致ESR降低60%,ESL降低80%。由于90°形状布置显示出了优势,可基于情况(b)研究更多情况,以进一步降低回路ESR和ESL。情况(d)将一个5mm × 6mm MOSFET替换为两个并联的3.3mm × 3.3mm MOSFET。由于MOSFET尺寸更小,回路长度进一步缩短,导致回路阻抗降低7%。情况(e)将一个接地层放置在热回路层下方,与情况(d)相比,热回路ESR和ESL进一步降低2%。原因是接地层上产生了涡流,其感应出相反的磁场,相当于降低了回路阻抗。情况(f)构建了另一个热回路层作为底层。如果将两个并联MOSFET对称布置在顶层和底层,并通过过孔连接,则由于并联阻抗,热回路PCB ESR和ESL的降低更加明显。因此,在顶层和底层上以对称90°形状或180°形状布置较小尺寸的器件,可以获得最低的PCB ESR和ESL。


为了通过实验验证MOSFET布置的影响,可以使用ADI的高效率4开关同步降压-升压控制器演示板LT8390/DC2825A和LT8392/DC2626A4。如图7a和图7b所示,DC2825A采用直线MOSFET布置,DC2626A采用90°形状的MOSFET布置。为了进行公平比较,两个演示板配置了相同的MOSFET和解耦电容,并在36V转12V/10A、300kHz降压操作下进行了测试。图7c显示了M1导通时刻测得的VIN交流纹波。采用90°形状的MOSFET布置时,VIN纹波的幅度更低,谐振频率更高,这就验证了热回路路径较短导致PCB ESL更小。相反,直线MOSFET布置的热回路更长,ESL更高,导致VIN纹波幅度要高得多,并且谐振频率更低。根据Cho和Szokusha研究的EMI测试结果,较高的输入电压纹波还会导致EMI辐射更严重4。

 

image.png

图7.(a) LT8390/DC2825A热回路,MOSFET以直线布置;(b) LT8392/DC2626A热回路,MOSFET以90°形状布置;(c) M1导通时的VIN纹波波形。


热回路PCB的ESR和ESL与过孔布置的关系


热回路中的过孔布局对回路ESR和ESL也有重要影响。图8对使用两层PCB结构和直线布置功率FET的热回路进行了建模。FET放置在顶层,第二层是接地层。CIN GND焊盘和M2源极焊盘之间的寄生阻抗Z2是热回路的一部分,作为示例进行研究。Z2是从FastHenry提取的。表3总结并比较了不同过孔布置的仿真ESR2和ESL2。

 

image.png

图8.热回路PCB模型,(a) 5个GND过孔靠近CIN和M2布置;(b) 14个GND过孔布置在CIN和M2之间;(c) 基于(b),GND上再布置6个过孔;(d) 基于(c),GND区域上再布置9个过孔。


通常,添加更多过孔会降低PCB寄生阻抗。然而,ESR2和ESL2的降低程度与过孔数量并不是线性比例关系。靠近引脚焊盘的过孔,所导致的PCB ESR和ESL的降低最明显。因此,对于热回路布局设计,必须将几个关键过孔布置在靠近CIN和MOSFET焊盘的位置,以使高频回路阻抗最小。


表3.使用不同过孔布置时提取的热回路PCB ESR2和ESL2

image.png


结论


减小热回路的寄生参数有助于提高电源效率,降低电压振铃,并减少EMI。为了尽量减小PCB寄生参数,ADI研究并比较了使用不同解耦电容位置、MOSFET尺寸和位置以及过孔布置的热回路布局设计。更短的热回路路径、更小尺寸的MOSFET、对称的90°形状和180°形状MOSFET布置、靠近关键元器件的过孔,均有助于实现最低的热回路PCB ESR和ESL。


参考资料


1Mattan Kamon、Michael Tsuk和Jacob White。 “FASTHENRY: A Multipole-Accelerated 3-D Inductance Extraction Program.” IEEE Transactions on Microwave Theory and Techniques,第42卷,1994年。

2Andreas Musing、Jonas Ekman和Johann W. Kolar。 “Efficient Calculation of Non-Orthogonal Partial Elements for the PEEC Method.” IEEE Transactions on Magnetics,第45卷,2009年。

3Ren Ren、Zhou Dong和Fei Fred Wang。 “Bridging Gaps in Paper Design Considering Impacts of Switching Speed and Power-Loop Layout.” IEEE,2020年。

4Yonghwan Cho和Keith Szolusha。“低辐射的4开关降压-升压型控制器布局——单热回路与双热回路”。模拟对话,第55卷,2021年7月。

5Henry J. Zhang。“非隔离开关电源的PCB布局考量”。ADI公司,2012年。

6Christian Kueck。“电源布局和EMI”。ADI公司,2012年。


关于ADI公司


Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。


关于作者


Jingjing Sun于2022年毕业于田纳西大学诺克斯维尔分校,获电气工程博士学位。毕业后,她加入了ADI公司电源产品部,工作地点位于美国加利福尼亚湾区。她目前是一名高级应用工程师,负责支持针对多市场应用的μModule®产品。


Ling Jiang于2018年毕业于田纳西大学诺克斯维尔分校,获电气工程博士学位。毕业后,她加入了ADI公司电源产品部,工作地点位于美国加利福尼亚湾区。她目前是一名应用经理,负责支持针对多市场应用的μModule®产品。


Dr. Henry Zhang(张劲东博士)是ADI的Power by Linear™应用总监。他于1994年获得中国浙江大学颁发的电子工程学士学位,分别于1998年和2001年获得弗吉尼亚理工学院暨州立大学(黑堡)颁发的电子工程硕士学位和博士学位。他于2001年加入凌力尔特(现在已成为ADI的一部分)。


关键字:开关电源  热回路  PCB 编辑:张工 引用地址:如何通过最小化热回路PCB ESR和ESL来优化开关电源布局

上一篇:开关模式电源中,当脉冲被忽略时
下一篇:集成无源元件的电源管理集成电路

推荐阅读

如何利用PCB设计stm32单片机
单片机是现代电子产品中不可或缺的组成部分,它在自动化控制、通讯、仪器仪表、家电、安防等领域有着广泛的应用。而PCB(Printed Circuit Board)也是电子设计中不可或缺的一环,是来集成各种元器件的载体。那么,如何利用PCB设计stm32单片机呢?本文将为大家解答这个问题。首先,我们需要明确stm32单片机的基本架构和性能特点。stm32单片机采用了Cortex-M内核架构,并具有低功耗、高速、低噪音等特点。在使用stm32单片机设计电路时,我们需要对其数据和控制信号进行充分的了解,从而根据自己项目的需求选择合适的芯片。接下来,我们来介绍如何利用PCB设计stm32单片机。首先,我们需要通过软件绘制PCB电路图。最常用的
发表于 2023-03-24
使用示波器进行开关电源测量
在理想情况下,每个电源都应该按照为它设计的数学模型那样工作。但现实的情况却可能出现元器件有缺陷,负载变化,供电电源失真,甚至是放置环境的不同也会对结果造成影响,所以设计人员需要借助示波器进行电源测量。示波器的选择不仅要考虑合适的带宽、采样速率和足够的通道等因素,还要兼顾到采购成本。那么,该如何选择一款适合自己的示波器,以及在开关电源中都有哪些实用的测量技巧呢?在使用示波器进行实际测试时,带宽、衰减比、浮地测量、共模抑制比、电流测量等如果测试不准确,将产生误差,这会对测量结果产生很大影响。为了避免测试误差,R&S的测试专家将为您一一解析以上参数,确保测试准确性。带宽带宽是大多数工程师在选择一款示波器时首先考虑的参数。通常认为应该选带宽
发表于 2023-03-24
使用示波器进行<font color='red'>开关电源</font>测量
PCB板ICT/FCT夹具应力如何测试?
铣刀分板机、走到分板机、铡刀分板机、锯片分板机、激光分板机等分板过程中PCBA应力应变如何测试呢?可以按照一下步骤:1、测试点位选择:a、在生产使用过程中,最易出故障的地方b、选择探针或者压棒附近的易损元器件c、尺寸在 27*27mm以上的BGA必须测试,包含但不限于FCBGA、CBGA。如果板上没有大于27*27mm的BGA,优先选择板上最大的BGA或者应力集中的BGA进行测试。2、选取和黏贴应变片:应变片是一种可以按应力的大小线性变化电阻值的传感器,应变片发生形变,电阻值将会发生相应的变化,将应变片黏贴在需要测试的电路板上。3、连接仪器:把应变片的引线连接到测试系统的测试仪器上,调整好采样频率、滤波值、增益设置、通道数目、配置主
发表于 2023-03-23
激发职业技能大赛新活力,梦之墨再次助力江苏省赛
激发职业技能大赛新活力,梦之墨再次助力江苏省赛目前我国已经建成世界上规模最大的职业教育体系,职业教育在支持国家经济社会发展中发挥了重要作用。为适应新时代经济和产业发展要求,2022年《中华人民共和国职业教育法》修订方案通过,对新形势下高素质的技术技能人才的培养提出了更高的要求,要构建全方位、高层次、多途径的技能人才培养体系,打造高素质、高水平的技能人才队伍,以人才为引领推动产业结构的转型升级。而职业教育体系中,职业技能大赛作为一项重要制度设计与创新,不仅可以作为高层次人才培养成果的检验手段,更可以作为促进职业教育整体向前发展的重要引擎。随着人才培养要求的提升,职业技能大赛的制度和考核内容也在不断升级创新。2023年3月4日,江苏省职
发表于 2023-03-10
激发职业技能大赛新活力,梦之墨再次助力江苏省赛
在栅极驱动器 IC 方面取得的进步让开关电源实现新的功率密度水平
在栅极驱动器 IC 方面取得的进步让开关电源实现新的功率密度水平经久耐用的电气隔离技术以及栅极驱动器 IC 输出级和封装的多项创新简介像许多电子领域一样,进步持续发生。目前,在 3.3 kW 开关电源 (SMPS) 中,产品效率高达 98%,1U结构尺寸,其功率密度可达 100 W/in³。这之所以可以实现是因为我们在 图腾柱 PFC 级 中明智地选择了超结 (SJ) 功率 MOSFET(例如 CoolMOS™),碳化硅 (SiC) MOSFET(例如 CoolSiC™),而且还采用了氮化镓 (GaN) 功率开关(例如 CoolGaN™)用于400V LLC 应用。PFC 和 LLC 数字控制器是必不可少,正如采用平面磁性器件和先进
发表于 2023-03-02
在栅极驱动器 IC 方面取得的进步让<font color='red'>开关电源</font>实现新的功率密度水平
开关电源中直流电子负载的四种测试方案
电子负载最初是用于测试直流电源的专用产品。电子负载显示电源对各种负载条件的反应。电子负载中常见的FET开关和非电抗组件的使用避免了共振和不稳定性。DC随着越来越多的电子设备转换和存储能量,电子负载越来越受欢迎。它们可用于测试大多数直流电源,包括电池,太阳能电池板,LED驱动器,DC-DC转换器和燃料电池。方式1.测试电池–恒定电流(CC)模式当前优先模式是电子负载测试模式中最流行的模式。此设置的基本用途是测量电池中存储的总能量。当电池提供电流时,其电压下降。通过使用此特性(电压曲线),我们可以根据时间预测电池的容量。表1:25ºC时18650A锂离子电池的规格表作为恒流测试示例,我们使用锂离子18650电池。以毫安为单位的容量(C)
发表于 2023-02-07
<font color='red'>开关电源</font>中直流电子负载的四种测试方案
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved