基于AT89C51+DSP的双CPU伺服控制器的研究

2008-06-27来源: 电子设计技术关键字:DSP  运动控制器  伺服放大器  交流伺服驱动  嵌入式PC  上位机  输出模块  交流

  1 引 言

  近年来,随着制造业的不断进步,现代制造业对精密化、精确化、高速化、自动化发展的要求越来越高,传统的运动控制器大部分采用8051系列的8位单片机,这种单片机虽然节省了开发周期,但缺乏灵活性,且运算能力有限,难以胜任高要求运作设备[ 1 ] .DSP的数据运算和处理功能十分强大,即使在很复杂的控制系统中,其采样周期也可以取得很小,控制效果可以接近于连续系统. 把DSP与单片机各自优势相结合将是高性能数控系统的发展趋势. 本文针对数控系统的要求,开发了以TI公司的高性能浮点DSP和ATMEL公司的AT89C51为主控芯片的运动控制器. 它以嵌入式工业PC作为基本平台,通过PCI接口与嵌入式工业PC协调并进行数据交换,并以DSP高速运动控制卡作细插补和伺服控制的核心,来对永磁同步电动机的运动进行控制,取得了良好的应用效果.

  2 HANUC CNC2000 i系统

  HANUC CNC2000 i系统控制框图如图1所示,系统主要包括嵌入式PC、操作面板、运动控制模块、彩显、输入/输出模块、数控键盘、DNC模块几部分.为实现高速、高精确度曲面轮廓精加工,必须提高微段轮廓线的解释执行能力和伺服驱动特性,为了保证零件程序的传送、插补、加减速控制等的连续处理, CNC应具备足够高的数据处理能力. 但普通的PC机在工业现场控制中,存在体积大、功耗高、可靠性差等缺点. 基于这种情况, 嵌入式工业微机———PCl04总线模块应运而生.

  

  图1 HANUC CNC2000i数控系统结构框图

  本系统的嵌入式PC采用Intel80486处理器,内置32M缓存,MS - DOS操作系统. 与传统的工业PC相比,其32M缓存保证了数控系统加工时的快速性和精确性. 因为,在加工的时候,缓存内的数据段直接和后续的译码程序相关联,所以缓存的容量越大,所存储的程序越多,执行起来也越快,并且还能进行小线段插补,充分保证了加工的精确度. 与其相连的DNC模块可通过RS232接口与上位机通信,使得整个系统具有良好的开放性.运动控制模块是本系统的核心,它以智能功率模块为开关器件,以TMSLF2407 +AT89C51为硬件控制核心,采用空间矢量控制方法. 它发出控制命令给伺服放大器,伺服放大器得到信号后发出指令控制交流永磁伺服电机,编码器将实际工作情况通过伺服放大器返回给运动控制模块,这种闭环控制模式充分保证了加工精确度. 通过正、负限位开关防止“飞车”、失控等危险事故发生. 交流伺服驱动系统的结构如图2所示.

  

  图2 交流伺服驱动系统结构图

  TMSLF2407是用来实现电流环、速度环、SVP2WM信号发生、故障检测、保护、信号处理及实时性比较高的矢量控制和闭环控制. 用单片机完成实时性要求比较低的管理任务,如I/O接口管理、键盘处理、显示、串行通讯等. FPGA 用于AT89C51与DSP之间的数据交换. 且系统可支持模拟速度输入、数字速度输入、脉冲输入及通过上位机进行控制等功能.

  3 空间电压矢量脉宽调制原理

  在全数字控制的交流伺服驱动系统中,通常采用数字脉宽调制方法来代替传统的模拟脉宽调制.而在众多的脉宽调制技术中,空间电压矢量是一种优化的PWM技术,能明显减小逆变器输出电流的谐波成分及电动机的谐波损耗,降低脉动转矩,且其控制简单,数字化实现方便,电压利用率高,已有取代传统SPWM的趋势.

  在本文中, Tk 和Tk+1分别为在逆变器相邻两个工作状态Vsk和Vsk+1下的导通时间,表示为

  在一个完整的调制周期Ts 内, 除了Tk 和Tk+1的导通时间外, 其余为0 状态时间. 0 状态时间T0 由两个自由轮换状态时间T7 和T8 用等式表示为

  T0 =T7+T8 =Ts-Tk-Tk+1 (2)

  由于0状态存在于每一个区域内,一般发生在每个调制周期的开始和结束时, 总的0状态时间一般分成两个相同的0状态时间,即

  T7 = T8 =T0/2(3)

  以便获得对称的空间矢量脉宽调制信号.依据式( 1 ) ~ ( 3 ) 可得到对应电压空间矢量

  V*Sref在0 <θ<π/3

  扇区内双边空间矢量脉宽调制的逆变器开关信号,如图3所示.

  

  类似的方法可以计算出电压参考信号V*Sref在其他5区域内双边空间矢量脉宽调制的三相逆变器开关时间,如表1所示.

  中电网 | 作者:荀尚峰,杜坤梅,万筱剑,邓浩

  

  

  图5 数据处理模块子程序框图

  5 实验研究

  伺服系统是数控装置和机床的联系环节,伺服系统的性能,在很大程度上决定了数控机床的性能. 本文在一台HANUC CNC2000 i系统中进行了实验研究, 给出了其中一轴的伺服性能波形图。图8和图9给出了CNC2000 i系统的加工程序的X 轴交流伺服系统的性能波形, 5个通道分别为速度指令n (单位: r /min) , 反馈速度n (单位: r /min) ,转矩图形误差e (% ) ,零偏差U (单位: V) ,定位完成信号S (单位:V) .从实测波形图中可以看出,该伺服系统具有良好的位置跟踪性和准确的定位控制精确度.

  

  图6 总线控制模块流程图

  

  图7 参数管理模块流程图

  

  

  6 结 语

  由于采用单片机与DSP配合,系统的运算和实时处理的能力大大增强,可以适应多坐标轴、高速度、高精确度的数控系统,实现单处理器系统难以实现的功能. 与由单处理器完成所有任务的情况相比,该方法允许较短的插补周期,实现更高的进给和伺服控制精确度. 并经实验证明该伺服运动控制器反向速度快、定位时间短、转矩恒定,具有良好的线性调速特性及动态性能.

关键字:DSP  运动控制器  伺服放大器  交流伺服驱动  嵌入式PC  上位机  输出模块  交流 编辑:孙树宾 引用地址:http://news.eeworld.com.cn/gykz/2008/0627/article_1025.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:ARM LPC2101的无刷直流电机控制方案
下一篇:用于控制变速电动机的功率模块

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

Picocom获得CEVA DSP授权许可,用于5G新射频基础设施SoC
CEVA,全球领先的无线连接和智能传感技术的授权许可厂商(NASDAQ:CEVA) 宣布Picocom公司已经获得授权许可,在其即将发布的分布式单元(DU)基带卸载系统级芯片(SoC)中部署使用CEVA-XC12 DSP。        Picocom是致力于为5G新射频基础设施设计和销售产品的半导体企业,该公司连同Airspan、英特尔、IP Access和高通都是小蜂窝论坛(SCF) 5G功能性API (FAPI)规范的主要贡献者。这项规范旨在推动5G RAN /小蜂窝供应商生态系统发展,并且加速5G网络中开放式多供应商小蜂窝设备的部署使用。在开放式RAN
发表于 2020-05-07
Picocom获得CEVA DSP授权许可,用于5G新射频基础设施SoC
dSPACE提供完整解决方案 用于开发和测试新充电技术
(图片来源:dSPACE官网)据外媒报道,dSPACE DS5366智能充电解决方案,为汽车制造商和充电站运营商开发和测试智能充电技术提供了完整的解决方案。该解决方案遵循国际标准,保证互操作性,并提供一系列测试选项和动态模型,支持研究人员开发车载充电器、充电柱和未来的感应充电系统。开发DS5366智能充电解决方案的核心要求包括:现有测试系统集成、可满足具体要求的测试深度。不论从电气层面,还是协议层面,都有可能进行广泛的操作。根据 ISO 15118 标准,dSpace解决方案包括含有开放模型的软件部分和专用通信硬件模块,确保可以适应电力线通信。通过全面记录所有通信事件,手动或自动检查预期行为和协议规范的遵守情况,以及执行诊断
发表于 2020-05-02
dSPACE提供完整解决方案 用于开发和测试新充电技术
Uhnder与dSPACE合作 推进雷达传感器技术发展
雷达是自动驾驶的关键技术。据外媒报道,近日,Uhnder与dSPACE达成协议,将在传感器研发和验证解决方案两大领域互相支持,确保雷达传感器技术能够满足交通安全的高要求。(图片来源:dSPACE官网)为了满足安全性和质量方面的高要求,雷达传感器必须可靠、详细地探测周围环境。对于道路使用而言,重要的是要实施稳健的措施,尽量减少干扰。为此,Uhnder开发了独特的数字雷达芯片(RoC),结合了先进的CMOS和数字代码调制(DCM)技术。Uhnder的4D数字调制雷达芯片将192个虚拟通道集成到一个芯片上,提供出色的性能,并采用高对比度分辨率(HCR)技术,显著提高雷达的探测距离和角度分辨率,并且可以区分大型雷达反射器附近的小型雷达
发表于 2020-04-24
Uhnder与dSPACE合作 推进雷达传感器技术发展
基于TI DM642和OMAP5912 DSP实现行车安全辅助记录系统的设计
/无线传输,不分时空地保护使用者的爱车。如图1所示,CADAS是结合两片TI的DSP实验板而成。一片为TI DM642,负责实时快速计算前后车道线以及车辆侦测算法,并将侦测结果透过Zigbee无线传输至另一片实验板作警示用。而另一片实验板则是采用TI OMAP 5912,本片实验板最大的特色就是结合ARM以及DSP在一颗IC上,让我们可以利用ARM强大的控制功能,结合OS来驱动所有的外围设备来符合我们所需要的功能。在OMAP 5912上,我们将Embedded Linux成功植入,并透过相对应的Driver,使得USB Camera、Wireless LAN Module、Touch
发表于 2020-04-24
基于TI DM642和OMAP5912 DSP实现行车安全辅助记录系统的设计
基于DSP和ADl674 AID转换芯片实现车载转台动态监测系统的设计
结果的影响,另外将水平仪的测量值输出到两个方向同步显示,一部分将显示值引导到主控软件的界面上,另一部分同步到载车的侧壁上。具体的同步方式如图3所示。这样,一方面调平人员可以根据中心机界面上水平度的实时显示来监测车载转台的水平度,以判断是否需要调平;另一方面,在词平的过程当中,调平人员可在车下根据载车侧壁的显示值进行调平,提高了调平的精确度和快速性。2 系统的硬件实现2.1 硬件结构系统的硬件结构框图如图4所示,由水平仪、AID转换芯片ADl674、DSP、BCD-7段锁存/译码/驱动器MCl4513、外部电压基准MAX6133、MAX488接口芯片和中心机等部分组成。2.2 硬件工作过程分析在该系统中,A/D转换和数码显示是相对较为重
发表于 2020-04-24
基于DSP和ADl674 AID转换芯片实现车载转台动态监测系统的设计
microchip dsPIC33 IC3D仿真,“目标器件未准备好调试”问题
可以下载程序,但调试时出现如下图错误时原因主要有以下三点:一、代码保护配置错误,应关闭代码保护功能,如下二、PGC/PGD端口选择错误,应根据硬件电路连接进行配置三、位配置没有生效位配置设置完后点击“输出生成源代码”,复制粘贴到configuration_bits.c文件其他错误原因推荐阅读相关调试器指南如《ICD3调试指南(MPLAB-X)》,以及《MPLAB XC16 C 编译器 用户指南》、《MPLAB X IDE用户指南》。附:无法调试的首要原因(来自ICD3调试指南)
发表于 2020-04-22
microchip dsPIC33 IC3D仿真,“目标器件未准备好调试”问题
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved