温度问题为您解决(三)高性能处理器模温监测

2019-08-29来源: EEWorld关键字:温度传感器  TI

上一篇文章中,我们已经就如何监测电路板温度进行了介绍。但是,诸如中央处理单元 (CPU)、图形处理单元 (GPU)、专用集成电路 (ASIC) 和现场可编程门阵列 (FPGA) 之类的高性能处理器中的电源管理通常更复杂。通过温度监测,这些系统不仅可以启动安全系统关闭程序,还可以利用温度数据来动态调整性能。


监测过程温度可以提高系统可靠性并最大限度提升性能。如下图所示,高性能处理器通常使用散热器吸收管芯中的过多热量。较高的温度可能会激活散热风扇,修改系统时钟,或者在处理器超过其温度阈值时快速关闭系统。


1.png

搭载高性能处理器的主板通常需要散热器


管芯温度监测的设计注意事项


为了实现高效的温度监测,高性能处理器有两个设计注意事项:温度精度和传感器放置。处理器的温度精度直接与传感器位置相关。


2.png

通过高精度温度监测提高系统性能


如上图所示,通过高精度的温度监测,可以最大限度提高处理器性能,从而将系统推动到其温度设计极限。虽然大多数集成电路都有内置的温度传感器,但由于晶圆和其他各批次之间的差异,这些传感器的精度并不一致。另外,必须根据基准来调理处理器,从而调整相对于管芯温度的系数。高性能处理器本身具有复杂的电路并会引起自发热,因此会产生随温度增加的温度误差。如果设计的系统具有较低精度和温度误差,系统的性能将无法在其温度设计极限内达到最大化。


传感器放置和精度


集成的温度传感器或温度二极管或外部温度传感器可以监测处理器的热性能。在某些情况下,同时使用内部和外部传感器可以最大化系统性能并提高可靠性。


双极结晶体管集成温度传感器


一些高性能处理器包含用于温度传感的双极结型晶体管 (BJT)。BJT 具有取决于温度且可预测性极高的传递函数。远程温度传感器使用此原理来测量管芯温度。在互补金属氧化物半导体工艺中最常见的 BJT 是 P 沟道 N 沟道 P 沟道 (PNP)。下图显示了一个用于测量 PNP 晶体管连接配置的远程温度监测电路。


3.png

用两个电流测量基极-发射极电压变化 (ΔVBE)


由于晶圆和不同批次之间的差异引起的噪声和误差,设计远程温度监测系统的过程可能充满挑战。温度二极管误差可能由以下原因引起:


• 理想因子变化。BJT 温度二极管的特性取决于工艺几何因素和其他工艺变量。如果知道理想因子 n,则可以使用 n 因子寄存器来校正 n 因子误差。或者,可以使用软件校准方法来校正所需温度范围内的理想因子变化。


• 串联电阻。由于电流源,信号路径中的任何电阻都将引起电压失调。现代远程温度传感器采用串联电阻算法,可消除由高达 1-2kΩ 的电阻引起的温度误差。即使与电阻-电容滤波器结合使用,该算法也能实现稳健、精确的测量结果。


• 噪声注入。当二极管走线与承载高电流的高频信号线并行排布时,耦合到远端印刷电路板走线中的电磁干扰或电感可能导致误差。这是远程温度传感器最重要的电路板设计注意事项之一。


• Beta 补偿。集成到 FPGA 或处理器中的温度晶体管的 Beta 值可能小于 1。具有 Beta 补偿的远程温度传感器专门设计用于与这些晶体管结合使用并校正与它们相关的温度测量误差。与分立式晶体管一起使用时,Beta 补偿特性不会带来任何好处。


器件建议


TMP421 提供单个通道来监测 BJT;也有多通道远程温度传感器支持多达八个通道,可在本地和远程测量温度。

TMP451 在本地和远程均可提供高精度 (0.0625°C) 温度测量。服务器、笔记本电脑和汽车传感器融合应用可受益于多通道远程传感器。


外部温度传感器


虽然内置温度传感器位置最佳,但其精度低至 ±5°C。添加外部本地温度传感器可以提高管芯温度精度并提升系统性能。当集成的管芯温度传感器不可用时,也可以使用本地温度传感器。然而,对于本地温度传感器,传感器位置是重要的设计注意事项。下图显示了放置本地温度传感器的一些选项:位置 a、b 和 c。


4.png

通过放置传感器实现高性能处理器温度监测


• 位置 a。位于微处理器散热器中心钻孔中的传感器与管芯非常靠近。散热器可以夹持到处理器上,或者用环氧树脂贴附到处理器顶部。此位置的温度传感器通常需要较长的引线,而随着散热器到微处理器之间的导热性能逐渐下降,传感器数据将变得不正确。


• 位置 b。另一个放置传感器的潜在位置是在处理器插座下方的空腔中,此处的组装非常简单直接。鉴于传感器与气流隔离,环境温度对传感器读数的影响极小。此外,如果散热器与处理器分离,传感器将显示处理器温度升高。尽管如此,如果采用这种传感器放置方式,传感器和处理器之间的温差可能在 5°C 到 10°C 之间。


• 位置 c。传感器可以安装在微处理器单元 (MPU) 旁边的电路板上。虽然这种安装方式易于实施,但传感器温度与 MPU 温度之间的相关性要弱得多。


器件建议


占位尺寸是选择本地温度传感器时需要考虑的一个因素。TMP112 采用 1.6mm x 1.6mm 封装,可以靠近处理器使用。与集成在处理器内部的温度传感器通常只有 5°C 至 20°C 的精度相比,TMP112 器件的 0.5°C 精度可以最大限度提高性能。


点击这里,快速定位TI模拟专栏,查看更多TI传感器类产品的最新、最全资料。同时,在未来的几篇文章中,我们会重点说明各种应用的设计注意事项,评估温度精度和应用尺寸之间的权衡,同时讨论传感器放置方法。


温度问题为您解决(一)温度传感基本原理


温度问题为您解决(二)系统温度监测

关键字:温度传感器  TI

编辑:赵清月 引用地址:http://news.eeworld.com.cn/gykz/ic472849.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:图漾科技:让3D机器视觉无处不在
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

利用稀土材料研制温度传感器,中国计量大学相关科研获进

       在浙江省自然科学基金的资助下,中国计量大学赵士龙团队围绕温度传感器用稀土掺杂氧氟微晶玻璃光纤做了深入研究。据悉,该课题于今年4月正式结题,并获得了一系列创新成果。作为在军事、冶金工业、石油化工、玻璃陶瓷等多个领域扮演着重要角色的矿物资源,稀土被大多数国家定义为“战略物资”。如何利用好稀土,不断拓展稀土应用领域,近年来科研人员做了不少研究。在浙江省自然科学基金的资助下,中国计量大学赵士龙团队围绕温度传感器用稀土掺杂氧氟微晶玻璃光纤做了深入研究。据悉,该课题于今年4月正式结题,并获得了一系列创新成果。赵士龙介绍,目前人们已经发明的各种各样的温度传感器,如传统的热电偶、热电阻及辐射
发表于 2019-08-16

STM32-(30):内部温度传感器

温度传感器STM32有一个内部的温度传感器,可以用来测量CPU及周围的温度(TA)。 该温度传感器在内部和ADCx_IN16输入通道相连接,此通道把传感器输出的电压转换成数字值。温度传感器模拟输入推荐采样时间是17.1 u s。STM32的内部温度传感器支持的温度范围为:-40~125度。精度比较差,为±1.5°C左右。注:V25在 25℃时的值为1.43V,斜率为0.0043
发表于 2019-08-13
STM32-(30):内部温度传感器

温度问题为您解决(二)系统温度监测

在上一篇文章中,我们已经就温度传感的基本原理进行了介绍。本文将继续这个话题,阐述系统温度监测这个话题。对于许多系统设计,有必要监测高功率组件(处理器、现场可编程门阵列、场效应晶体管)以确保系统和用户安全。温度读数的精确性非常重要,因为它使设计人员能够在提高性能的同时保持在安全限制内,或者通过避免在其他地方过度设计来降低系统成本。德州仪器 (TI) 的紧凑型高精度温度传感器产品系列可以更靠近这些关键组件放置,实现最精确的测量。如何监测电路板温度电路中的温度问题会影响系统性能并损坏昂贵组件。通过测量印刷电路板 (PCB) 中存在热点或高耗电集成电路(IC) 的区域的温度,有助于识别热问题,进而及时采取预防或纠正措施。您可能希望监测
发表于 2019-07-16
温度问题为您解决(二)系统温度监测

第十节:(一)使用 DS18B20 温度传感器设计温控系统

项目实现功能: 使用51开发板上的DS18B20温度传感器设计温控系统,要求如下:       用串口将采集到的温度数据实时发送至上位机,在上位机软件上显示当前温度值(关于上位机软件的编写请参考下篇VB 内容)。       关于温度变化的实现,大家可参考以下方法: 室温通常在 28°C左右,用手捏住温度传感器可使其温度上升,用温度低的物体接触温度传感器可使其温度降低,或在温度传感器上淋点水,然后对着温度传感器吹气可以使温度迅速下降,大家也可想其他办法使温度传感器周围温度在 25°C~32°C 变化。 一、温度传感器概述: 
发表于 2019-06-28
第十节:(一)使用 DS18B20 温度传感器设计温控系统

ABB首创非侵入式温度传感器 荣获德国创新奖金奖

   据麦姆斯咨询报道,2019年5月28日,ABB(Asea Brown Boveri Ltd.)凭借其全新的非侵入式温度解决方案荣获德国创新奖(German Innovation Awards)B2B电子技术类(Excellence in Business to Business – Electronic Technologies)金奖。该奖项于柏林科技博物馆举办庆祝活动期间颁发。这款设备是同类产品中第一款非侵入式温度传感器,它的诞生标志着温度测量新纪元的开启。该传感器兼具了传统侵入式传感器的准确性与灵敏度,通过简单的非侵入式测量方法即可准确测量工业过程中的温度,并消除泄漏风险,显著提高了工作人员、生产设备
发表于 2019-06-04
ABB首创非侵入式温度传感器 荣获德国创新奖金奖

Google Pixel 4 Motion Sense可凌空操作

据XDA消息,来自YouTube频道主持人M。 Brandon Lee曝光了Google Pixel 4的“Motion Sense”功能,这个功能允许用户在手机旁边向左或向右挥手即可切换歌曲,在手机上方挥手可以暂停歌曲播放或者静音手机;此外,将手机放在桌子上,用户还可以将手放在手机上,它就会显示锁屏以便用户查看时间、通知和其他信息等。  此前的爆料显示,Google Pixel 4 XL的“额头”内将包含Face ID识别模块、红外、泛光感应原件、Soli雷达芯片、音频端口、面部Dot Projector(可以避免使用照片误解锁传感器,可以分辨拍摄图像的depth,勾画出3D的效果,从而辨别复杂的物体形状)等。  配置方面
发表于 2019-09-14
Google Pixel 4 Motion Sense可凌空操作

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved