深度解析—IMEC对EUV工艺未来的思考

2019-08-22来源: 半导体百科 关键字:EUV  IMEC
2019年,EUV光刻(EUVL)将达到一个重要的里程碑。经过多年的等待,先进光刻技术终于进入大批量生产。EUVL将率先用于7nm节点(IMEC N8或代工厂N7)逻辑后段(BEOL)的最关键金属层和通孔。与此同时,研究中心正在探索未来技术节点的选择,这些节点将逐步纳入更多的EUVL印刷结构。在本文的第一部分,imec的干法蚀刻研发工程师Stefan Decoster比较了在N3及更先进技术节点下,不同的多重图形化方案的优缺点。


与过去相比,研究人员现在已经将EUVL作为存储器关键结构的图形化工艺的一个选项,例如DRAM的柱体结构及STT-MRAM的MTJ。在本文的第二部分,IMEC的研发工程师Murat Pak提出了几种STT-MRAM关键结构的图形化方案。

在后段引入EUV多重显影


今年,一些主要的代工厂将首次在其大批量生产线中使用EUVL来处理逻辑7nm(N7)芯片。它们将EUVL引入BEOL的最关键金属层(local M0至M3),以及互连这些金属层的过孔中。在这些层中,线和沟槽具有36-40nm量级的节距。沟槽与沟槽的隔断相互垂直,以便在连续沟槽中产生隔断。下一个技术节点N5会运用到28到32nm之间的金属节距。

“2017年,我们已经证明这些32nm节距线可以在一次曝光中直接用EUVL进行图形化,”Stefan Decoster补充道。“或者,可以使用混合选项,其中基于193i的SAQP与EUV block相结合。”


图示采用193nm浸入式SAQP图形化的32nm节距M2层,以及直接由EUV图形化制作的隔断(block)。

从EUV单次显影到EUVL多重显影


同时,很明显,EUVL单次曝光已经达到了32纳米到30纳米节距的极限。StefanDecoster:“超过30nm节距,使用当前的EUVL技术(即0.33数值孔径(NA))需要采用多重图形化技术,进一步缩小尺寸。这些技术通常涉及将芯片图案分成两个或更多个更简单的掩模,并且可以以不同的风格存在。EUV多重显影将比原先想象的更早推出, 主要是由于存在随机失效。“这些失效在极小的特征尺寸下开始变得更加明显,并且限制了EUV单次曝光的实际分辨率。

IMEC N5技术节点的多重显影方案

在实践中,这意味着IMEC N5(或代工厂N3)技术节点具有21nm的金属节距,这需要EUVLmulti-patterning,例如SADP或LELE,当然,IMEC还提供了另外两种方案,即193iSAQP,193i SAOP,仍然可以实现这些尺寸的线和沟槽。在成本,光刻质量和工艺流程的复杂性方面,这些技术中的每一种都具有其自身的优点和缺点。

“然而,EUVL single patterning 并不止步于此,”Stefan Decoster澄清道。“我们预计更松弛的金属层(例如M4至M7层)和关键过孔仍然可以利用EUVL单次曝光来实现。此外,IMEC和ASML正在开发下一代high-NAEUVL系统(NA =0.55),以进一步提高单次曝光的分辨率。”

IMEC N5以下:16 nm节距的图形化方案


IMEC的研究人员探索了四种不同的图形化方案,用于制作20nm节距以下的图形:基于193i的SAOP方案,基于EUV的SADP方案,基于EUV的SAQP方案和EUV SALELE方案。Stefan Decoster:“这四种方案都可以制作16nm节距的线。然而,它们在流程复杂性,成本,可扩展性和设计自由度方面存在差异,这些都是行业的重要考虑因素。我们还发现,线边缘粗糙度(LER)仍然是主要关注点。”

193nm 浸没式光刻仍然可以完成这项工作

在这些激进的节距下,193nm浸没式光刻只能与SAOP结合使用 ,从128nm节距开始经历三次图形倍增最终达到16nm节距。Stefan Decoster指出,193i SAOP的优点是线条边缘粗糙度(LER)小,但一个固有的缺点是极其漫长而复杂的工艺流程,这给过程控制和成本带来了挑战。

使用EUVL multi-patterning可以使flow变短

“出于这个原因,我们还探索了'较短的'基于EUVL的图形化方案,即EUV的SADP”,StefanDecoster补充道,“为了实现这种图形化方法,EUV光刻的起始节距必须为32nm。虽然目前的EUVL技术仍然能够制作32nm节距线,但是所得到的线宽不能小于16nm。因此,我们不得不应用额外的trim技术来实现在32nm节距下8nm的线宽(mandrel)。采用SADP技术,这种间距可以成功地降低到16nm。”16 nm节距的图形也可以采用更具可扩展性的EUVL SAQP方法,从更宽松的64nm节距开始。然而,对于这些基于EUV的多重图形化方法,线边缘粗糙度(LER)仍然是一个重要问题。该团队认为,这种LER可以进一步降低,例如通过选择恰当的光刻胶材料和改善光刻胶平滑性。



三种图形化flow可实现16nm节距图形(自上而下的SEM图):(顶部)基于EUV的SADP,(中)基于EUV的SAQP和(底部)193iSAOP。所有三个选项的LER均在8nm line和space的情况下测得。


eSALELE:一种全新的工艺整合方案

前面三种多图案化方法都有一个共同点:首先,制作线和沟槽,然后添加隔断(block,例如使用自对准隔断方法)。IMEC团队还研究了一种使用EUVL的不同方法 ,称为eSALELE,其中线和隔断在整个相同的流程中定义。除了相对较高的LER之外,这种方法的另一个缺点是使用四个EUV掩模(两个用于线,两个用于隔断),这使得这个方案非常昂贵。Stefan Decoster说:“但eSALELE方法的主要优点是设计灵活,可以避免'虚设'(dummy)金属线(版图中并不真正需要的金属线)。避免这些线的出现有利于RC延迟和后段功耗的降低。

EUVL单次曝光与存储器:STT-MRAM的情况


由于其高写入和读取速度,STT-MRAM最近成为取代基于SRAM的最后一级高速缓存存储器的可能选项。STT-MRAM器件的核心结构是柱状MTJ,其中绝缘层夹在两个薄的铁磁层之间,所述铁磁层分别是钉扎层和自由层。MTJ可以以两种不同的电阻状态存在:低阻态(LRS,两个磁层的磁化平行)和高阻态(HRS,磁化处于反平行状态)。通过利用注入磁隧道结的电流切换自由磁层的磁化来执行存储单元的写入。读取操作依赖于隧道磁阻(TMR),其是两个阻值状态之间的电阻差的函数。

从193i到EUVL单次曝光

到目前为止,MTJ已经用193i图形化实现了200nm节距,当然之后的100nm节距也是。IMEC的研发工程师Murat Pak说:“但是为了满足未来存储器的高密度要求,我们需要更紧密的节距,例如50nm或更小,MTJ直径约为20nm。193i无法实现这么激进的节距,这凸显了引入EUVL单次曝光的必要性。“

LCDU会是最关键的指标

然而,在这么小的尺寸下,粗糙度和随机失效的影响不可以被忽略,因此需要改进的图形化方案。“对于这种存储器而言,最关键的参数结果是局部CD均匀性(LCDU),这是柱粗糙度的一种度量,”Murat Pak解释说。“这种LCDU显然会影响电阻值,从而影响STT-MRAM单元的读取性能。因此,确保良好的LCDU对于STT-MRAM制造至关重要。”


(左)展示阻值状态和允许的变化范围;(右)MTJ的X-SEM截面图。


为了优化MTJ的LCDU,已经提出并比较了不同的EUV光刻方案。MuratPak:“首先,我们考虑了不同的光刻胶,包括众所周知的化学放大胶(CAR),以及两种不同的MCR(含金属)光刻胶。其次,我们的团队筛选了不同的底层包括旋涂碳(SOC)和旋涂玻璃(SOG),并研究了它们对光刻胶性能的影响。最后,我们研究了不同的tonalites(相当于正胶和负胶的区别,编者注),特别是CAR光刻胶(做柱)和positive tone光刻胶加上tone反转工艺(将孔变成柱)。“该团队还研究了光刻胶上的LCDU的改进是否会转移到了蚀刻之后。以上所有实验中的EUV都使用ASMLTWINSCAN NXE:3300B进行曝光。

tone反转过程的图示:(左)用正toneCAR光刻胶获得的孔和(右)在tone反转后获得的柱。

三种有可能的方案(如下图,由编者添加)


其中一支MCR光刻胶搭配SOC和SOG均获得了相对较好的LCDU结果。第三种方案是tone反转工艺 ,最终也表现良好。“对于所有这三种方法,我们获得了超过20%的LCDU的改进,”Murat Pak补充道。“这是整个工艺流程朝向1.55nm LCDU目标的重要一步。”对于这些有前景的光刻工艺方案,其他性能指标,如工艺窗口分析,柱圆度和尺寸均匀性均已通过验证。

总结


在本文中,已经针对未来的逻辑和存储器件(即,SST-MRAM)应用提出了各种EUVL图形化方法。对于逻辑,基于EUV的SADP,基于EUV的SAQP和基于EUV的SALELE与基于193i的SAOP的性能进行了比较。所有选项都有可能用于制作如16nm节距这样具有挑战性的金属线。但是,必须在工艺复杂性,成本,设计自由度和线边粗糙度方面进行权衡。


对于SST-MRAM,已经确定了三种不同的基于EUV的制作50nm节距的MTJ柱的方法,并且具有足够好的LCDU。


关键字:EUV  IMEC

编辑:muyan 引用地址:http://news.eeworld.com.cn/manufacture/ic472129.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:台积电:摩尔定律还活着,晶体管密度还可更进一步
下一篇:第三届中国服务型制造大会在郑州隆重召开

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

ESOL研发新能EUV光刻,韩或将有望摆脱对日依赖?

今年8月8日,日本解禁一批对韩出口半导体材料,其中包括对7nm先进制程至关重要的EUV光刻胶。韩国的半导体遭受到了重击,因为韩国半导体材料有80%左右是从日本进口的,而像三星、SK海力士据说库存只有坚持2、3个月。 韩国的生态系统不足以支持EUV光刻工艺。主要从日本引进的EUV光刻胶于7月被日本政府宣布监管,使韩国企业受到了直接打击。尽管三星电子和SK海力士生产自己的EUV光罩,但他们目前对外国公司提供的必要设备和材料依赖度很高。例如,EUV光刻系统仅由荷兰的ASML提供。 在这样的背景下,ESOL公司首席执行官KimByung-guk表示,该公司打算挑战EUV光刻市场中的外国公司。ESOL是Euv
发表于 2019-09-19

三星Exynos 9825安兔兔跑分: 首款7nm EUV工艺

       三星Note10系列如期而至,作为三星下半年的重磅旗舰,这一代的三星Note10系列整体风格变得更加硬朗,方方正正的造型,给机身的内部结构设计提供了便利。  除此之外,三星最新芯片Exynos 9825也正式亮相。Exynos 9825采用了7nm EUV工艺打造,是全球首款采用7nm EUV工艺的SoC。官方称该工艺可以让晶体管性能提高20-30%,同时耗电量减少30-50%。  CPU部分依然是两颗大核心搭配两颗中核心外加四颗小核心。GPU部分依然是Mali-G76 MP12,但主频从Exynos 9820的702MHz提升到了754MHz,这显然要得益于7nm EUV工艺
发表于 2019-08-17

台积电最新先进制程技术总结

(N7P),它还有诸如“第二代7nm”等别称。这个制程不能与N7+混为一谈,N7P是一个基于DUV的优化流程,它与N7使用相同的设计规则,并且IP完全兼容。N7P引入了FEOL和MOL优化,可以在等功率下提高7%的性能,或者在等速时降低10%的功耗。  7nm+工艺(N7+)N7+是台积电第一个在几个关键层采用EUV的工艺技术,其在第二季度进入量产阶段,产量与N7相似。同N7工艺相比,N7+的密度提高了1.2倍左右。据称,N7+在等功率时性能提高10%,在等性能下可降低15%的功耗。从表面上看,N7+似乎比N7P稍好一些。不过,这些改进只能通过新的物理重新实现和新的EUV掩模来获得。 6nm工艺(N6
发表于 2019-08-13
台积电最新先进制程技术总结

日批准EUV光刻胶及蚀刻气体出口 三星:坚持国产化

日本政府在进行对韩出口限制措施一个月后,审批了对韩国的EUV 光刻胶和蚀刻气体的出口许可。而韩国国内对此有着不同判断,有些认为是作秀给国际社会看,而有些认为这是让步。业界暂未能做出判断,选择持续关注事态发展。日本政府实施对韩出口限制过了35天的8月8日,日本政府审批了EUV 光刻胶和蚀刻气体的出口,得到审批的材料将供应至三星电子。EUV 光刻胶或将出货至三星电子EUV制程华城工厂,蚀刻气体则出货至中国西安工厂。出口限制举措仅过一个月的时间点上,对日本此举的韩国言论猜测纷纷。汉阳大学Park Jaegeun教授认为:韩国加速进行国产化后,已经影响至日本企业。虽然EUV光刻胶的90%都由日本生产,但30~40%基本是在韩国消耗
发表于 2019-08-13

日本已恢复向韩国出口?EUV光刻胶的材料已获批

。 此批准将让韩国的芯片制造商得到暂时的解脱,当前他们正在急于寻找替代日本关键材料的替代品。 韩国总理文在寅也表示,日本已批准向韩国出口高科技材料。文在寅表示,周三批准的是一种名为EUV光刻胶的材料,这对于三星的先进合约芯片制造生产至关重要。 不过,三星方面没有立即发表评论。
发表于 2019-08-09
日本已恢复向韩国出口?EUV光刻胶的材料已获批

新的固态电池技术又来了!

新的固态电池技术又登场了!根据了解,廉价、大容量的固态电池有可能使以往的实用化构思提前实现。据悉,开发该固态电池产品的是比利时的研究机构IMEC,松下也参与了其中电解质材料的开发。IMEC于6月宣布,开发出了体积能量密度为425 h /L的固体电解质锂离子充电电池(图1)。假设正极活物质使用磷酸铁锂(LFP),而负极活物质使用金属锂。 图1 2024年达成1000 Wh/L这张图展示了使用电解液的锂离子电池和IMEC开发的固体电池的体积能量密度变迁。作为电解液锂离子电池产品,400 Wh/L已经是其标准值,在实验室中也存在过700 Wh/L的实例,如果未来没有突破
发表于 2019-08-15
新的固态电池技术又来了!

小广播

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 电子设计 电子制造 视频教程

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved