AI如何解决模压成型封装厚度相关缺陷

2020-10-27来源: EEWORLD作者: Ernani D. Padilla Emmanuel P. Birog关键字:人工智能  塑封成型  相机扫描  激光扫描

1.前言

 

塑封成型工艺是集成电路封装技术最近几年取得的一项进步,该技术采用颗粒状塑封材料封装芯片,第一道工序是扫描基板上已完成引线键合的基板,获取基板上芯片的总数量,然后按照封装厚度要求计算所需塑封颗粒材料的数量。

 

 

第二步是把模塑颗粒注入到下模具,下模具载体台面涂有一层脱模剂,将基板引线朝上置于上模具夹具内。下模具抬起合模,把塑封材料压向基板,达到封装厚度要求后,下模具停止加压,如图1所示。

 

芯片扫描是塑封成型工艺中最重要的工序,因为这道工序决定了产品封装的厚度。芯片扫描分为激光扫描和相机扫描两种类型。激光扫描用于计算大尺寸芯片的数量,而相机扫描用于计算小尺寸芯片的数量。芯片扫描仅覆盖整个基板的有效区域,但不包括端轨和侧轨。图2所示是实际基板和实际芯片扫描结果。

 

 

1.1封装厚度相关问题

 

芯片扫描方法根据在产品配方中记录的芯片配置数据,识别产品批次错误或配方不正确,防止模具误操作。如果装入的产品与产品配方不一致,模具将会发现芯片尺寸不同或芯片垂直高度错误。最近推出的新产品的芯片配置数据完全相同,唯一的区别是封装厚度要求不同,如图3所示。如果使用封装厚度高的配方加工封装厚度低的产品,芯片扫描不会发现错误,因为芯片配置相同,反之亦然。

 

 

另一个封装厚度错误的问题是装入产品的引线键合存在差异。如果存在错位芯片,模具压板平整度将会受到影响,导致塑封材料从压板四边缝隙溢出。破损基板的裂缝如果延伸到模具工作区域,将导致塑封材料在合模过程中泄漏,这两种溢料情况都会导致模塑材料数量减少,无法满足封装厚度要求。最坏的情况是,由于封装很薄,材料不足将导致芯片和引线裸露在封装外面,如图4所示。

 

如何避免错位芯片和破损基板,改进办法目前仍在研究中,但是由于模塑材料和多个芯片叠装工艺都很复杂,改进还有待时日。

  

                         

对于基板破损,通过比较不同的产品发现,产品B和E在芯片键合和引线键合处都有通孔,基板破损发生率最高。多通孔工艺有较高的基板破损风险。对于错位芯片,只有在上道芯片贴装工序之后才能处理。在芯片面平整度较低时,可能会发生芯片错位问题。还值得注意的是,产品A和D的基板较厚,破损率较低。薄基板更容易破损,合模压力稍大一点就会损坏。下面章节比较表1中不同的产品。

 

1.2与封装厚度有关的缺陷率

 

2018年塑封成型工艺封装厚度相关缺陷的月均缺陷率为106 ppm,如图5所示。

         

  

模具溢料将会堵塞机台的真空流道,疏通流道需要停机,抽出阻塞物,这可能会影响生产效率。从2018年停机时间趋势来看,每月平均停机28个小时,如图6所示。

  

 

1.3目前的模具封装厚度误操作控制办法

 

当前防止因错误程序或装入错误批次而引起的加工错误的控制办法包括在模具上粘贴产品封装厚度要求,如表2所示。

 

                            

如图7所示,在每个批次芯片装入模具之前,检查每个批次的追溯信息(行程卡)、实际基板和模具配方是否完全一致。

 

 

如果某个批次的基板有异常,例如,在上线前发现基板损坏或有错位芯片,则将图8所示的标签贴到该批次基板上,提供可追溯信息,以评估该基板是否可以加工或从不能用于前次模具。

 

 

要求操作员使用千分尺测量模压封装厚度,从每个批次抽取1块基板测量,确保不会漏掉封装厚度错误,这是生产操作规范。

 

1.4在塑封成型中应用人工智能

 

针对因为配方错误或装入错误批次而导致的加工错误,芯片扫描范围被扩大到侧轨和端轨,如图10所示。

 

 

创新的想法是能够通过光学字符识别(OCR)方法识别基板端轨上的具有唯一性的由字母数字组成的产品材料代码,然后与所选产品配方中记录的材料代码对照检查。如果成分一致,继续检查其余的基板,直到检查完该批次的所有基板为止;如果不一致,模具将提示错误并停机。

 

对于损坏的基板或错位芯片,通过相机或激光扫描侧轨和端轨,对比扫描影像与合格产品的影像或轮廓,检查是否存在异常。如果发现异常,模具将提示发现错误并停机。

 

1.5 相关技术资料概述

 

 为了更好地理解具有唯一性的8位字母数字产品材料代码放错识别方法及其关键使能技术,本章将简要介绍各种相关的光学识别技术。光学字符识别是一种前景广阔的技术,可以将手写字母或文字转换为计算机文本。这项技术还是印刷文字数字化常用的一种方法,印刷文字转换为计算机格式后,可以进行电子编辑、检索、存储以及在线显示。光学字符识别分为多个阶段,包括预处理、分类、获取后处理,前段处理、分段处理、后段处理、特征提取。 

 

1.     多层感知器神经网络让光学字符识别成为可能。正常流程是先获取图像,然后对其进行预处理和分割。在分割期间,字符被线分开。字符图像中字符线的列举对于界定可检测区间边界至关重要。分割后的下一步是分离字符,接着时提取特征。为了完成特征提取过程,我们采用了图像到矩阵映射处理方法,将图像转换为2D矩阵。下一步是训练系统。通过训练,系统能够做出高效工作决策,并且在无法预测的环境中产生更好的结果。所提出的系统方案采用多层感知器学习算法。该方法采用金字塔状结构,这个结构不仅可以用于学习过程,还可以用于分类过程。通过在多层网络体系结构中应用学习过程算法,突触权重和阈值可以特定方式更新,使系统执行分类/识别任务的效率更高。突触权重对于迭代很重要。在迭代过程中,权重被更新为某个整数值。因此,为了识别对象,将其特征数据送入网络输入层,生成输出向量。现在使用这个输出向量和目标输出来计算误差。通过分析所得的输出值,可以确定字符的识别准确率。该方案识别独立字符取得91.53%的准确率,成句字符识别准确率达到80.65%。

 

2.     我们利用模板匹配和反向传播算法开发出了光学字符识别软件。模板匹配是最常用的一种光学字符识别技术,主要用于特征提取。因为简单,容易实现,这项技术很受欢迎。模板匹配又称关联。这种方法使用单个字符的像素矩阵提取特征。在测试数据集中使用相关函数R,并将结果存保存在数据库中。关联值最高的字符被选为最匹配的字符。反向传播算法使用反向机制来查找错误,并通过向后传播来减少错误。这种方法基于纠错机制。分组后发现的问题是,存在无法识别的字符,这些无法识别的字符是产生错误结果的字符。使用此方法可提高字符识别的正确率。

 

对于错位芯片和损坏基板检测,我们做了相机扫描识别物体的研究,重点研究图像分辨率增强技术,详见下文。

 

3.     有报道称采用深度神经网络识别物体取得了非常好的效果,不过,这些方案通常假设,有可用的适合的物体大小和图像分辨率,这在实际应用中可能无法保证。我们提出的框架是通过图像增强网络和对象识别网络两个深度神经网络协作学习,来识别超低分辨率图像。图像增强网络试图通过使用来自对象识别网络的协作学习信号,提升分辨率极低图像的锐度和信息量。针对高分辨率图像训练权重的对象识别网络,积极参与图像增强网络的学习过程,还将图像增强网络的输出用作增强学习数据,以提高其超低分辨率图像的识别性能。通过用各种低分辨率图像基准数据集做实验,我们证明了该方法能够提高图像重建和分类性能。

 

在错位芯片和损坏基板检测中,我们比较了激光扫描与相机扫描的性能,做了激光扫描在物体检测中的适用性研究。

 

4.     低成本3D成像,特别是通过使用激光检测和测距(LIDAR)成像,对于物体识别、地面测绘和机器视觉等应用非常重要。传统的飞行时间激光雷达使用扫描激光来获得目标的光强和距离,这需要窄带宽的照明光源和高速同步器。无脉冲宽度的3D激光雷达的非扫描产品原型,据我们所知,是业界首次整合单像素成像传感器和衍射光学元件。压力感测技术用于测量物体反射的回波脉冲,并重建目标场景的强度图。衍射光学元件用于提供结构化照明光源,并且可以从激光光斑提取数据,获得目标场景的深度图。我们给出了验证原型识别效果的仿真结果,并例证了在传统3D成像方法不可用或受限的情况下,使用我们的方案的优越性。这个创新原型在可见光谱以外的波长上具有成本低和结构灵活的优点,并且因为实用而受到高度关注。

 

2.材料与方法/实验细节/方法论

 

2.1材料

 

我们将使用涵盖所有可能的情况的产品来验证芯片扫描软件升级能否识别配方错误和批次误装。从封装厚度要求不同的三种产品中选择了三个批次,每个批次有20块基板。产品B和C具有相同的芯片配置,产品A的配置不同于B和C。产品A和C的模套厚度要求相同,而基板厚度不同。具有唯一性的材料代码是区别不同产品关键特征的重要工具,详见表3。

 

表3:错误配方/批次误装评测表

 

 

制备有错位芯片和损伤的芯片基板,模拟模具在芯片扫描过程中能否发现异常。异常位置包括端轨和侧轨。对于错位芯片,使用不同尺寸的芯片测试是否能发现异常。

 

2.1.1 芯片扫描软件升级

 

测试芯片扫描升级软件能否识别基板端轨上的唯一8位字母数字代码,如图12所示。

 

扫描捕获的信息将与被测产品配方信息对比。如果内容相同,则模具将继续运行;否则,模具将提升错误并停机,如图13所示。

 

为了检测芯片基板上是否有错位芯片或端轨和侧轨是否损坏,我们又开发了基板检测软件。这里将使用激光扫描和相机扫描两种不同的扫描技术测试该软件的识别能力。

 

相机扫描是通过比较坏基板与好基板的像素来识别基板是否存在错位芯片和损坏,如图14所示。

 

另一种检测技术是激光扫描,该技术扫描基板表面高度,并将捕获的图像与好基板的高度进行对比,如果高度偏差较大或较小,则模具将提示错误并停机。测试将使用有错位芯片和侧轨和端轨损坏的基板,如图15所示。

2.2测试过程

 

测试目的是比较两个扫描软件升级对材料代码识别和错位芯片及基板损坏检测的识别效果。

材料代码检测将测试相机能否准确识别不同产品的材料代码。面临的挑战是能否识别所有字母数字的字体大小、样式和方向。使用20块基板,随机插入错误材料代码,板对板测试升级软件的识别结果是否一致,详见表4。

 

表4.材料代码检测实验设计

                  

通过检测错位芯片和损坏基板,比较激光扫描和相机扫描的缺陷检测准确率。使用在端轨和侧轨上有不同尺寸和形状的缺陷的实际基板,测试芯片扫描的准确率;使用不同尺寸的错位芯片测试扫描灵敏度,如表5所示。

表5.错位芯片/破损检测实验设计

 

3.1材料代码识别测试


根据升级软件检测每个产品的材料代码的测试结果,三种测试产品的全部基板的检测准确率100%。正确和错误的物料代码均被准确识别,如图16的图表所示。

 

 

测试结果证明,检测准确率很高,所有被测产品的基板都被正确识别,包括另外10块材料代码错误的基板。

 

3.2异常基板识别测试

 

为了验证相机扫描和激光扫描哪个方法检测错位芯片和损坏基板的效果更好,进行了双比例检验,比较检测准确度。


对于错位芯片,使用当次被测产品的两种不同芯片尺寸进行卡方检验,比较激光扫描和相机扫描之间的扫描准确度差异。在置信度为95%,Pvalue值为0.0003时,相机扫描和激光扫描之间的扫描准确度存在显着差异,如图17所示。

 

 

实验结果证明,即使芯片尺寸很小,相机扫描仍能够始终如一地发现错位芯片的存在,因为像素识别对于相机阈值仍然很重要。相反,激光扫描准确度随着芯片尺寸减小而降低,因为它不能区分由于基板高度和平整度变化而导致的从基板导轨底部向上的高度相对于阈值的的变化。

 

损坏基板检测实验再次使用两块损坏特征不同的基板,一块基板上有缺口,另一块有裂缝,比较相机扫描和激光扫描的检测准确度,如图18所示。在置信度为95%,Pvalue值<0.0001时,相机扫描和激光扫描的识别准确率存在明显差异。

 

 

相机扫描检测损坏基板的准确率高于激光扫描,同理,错位芯片检测也是这种情况。但是,随着基板损坏的特征从高可见度的缺口变为裂缝时,检测的准确率也会降低。

 

3.2 建议

 

建议进一步开发检测功能,应对将来两种产品的材料代码相同但封装厚度要求不同的情况。 当前的做法是在基板上雕刻每个产品的附加代码,包括在产品的8位字母数字识别码中增加代附加码。

 

未来研究方向还可以是评估使用分辨率更高的相机提高检测准确度,特别是针对损坏基材的裂缝特点和尺寸小于本研究项目所测试的错位芯片。

 

应当设法改进错位芯片和损坏基板两个问题,因为本项目旨在改进缺陷检测率,防止残次产品进入塑封成型工序,预防产品质量问题和故障停机。如果基板不能返工,产品良率仍将会下降。

 

4. 结论

 

可以得出这样的结论,当前芯片扫描相机可以用光学字符识别(OCR)检测8位字母数字组成的唯一材料代码,并根据当前所选模具配方的参数发现模具误装的产品。

在检测芯片尺寸、基板缺口方面,相机扫描的准确率高于激光扫描,这是由于激光扫描对基板高度变化过于敏感,难以区分错位裸片和/或损坏基板。相机扫描不受这些因素影响,而是使用像素数作为检测参考依据。

 

关键字:人工智能  塑封成型  相机扫描  激光扫描 编辑:muyan 引用地址:http://news.eeworld.com.cn/manufacture/ic514408.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:全新封装技术为5G赋能,长电科技亮相 IC China 2020
下一篇:芯片封装技术对电子产品革新有何影响

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

成功的客户体验源于正确的技术投资
了对全球 100 多个网站的集中管理,同时又能够保持区域市场之间的品牌一致性,并能够从实体店和线上交易中获取与客户相关的商业洞察。通过全面了解客户旅程,他们现在可以大规模地提供个性化体验。 用数据聆听用户的心声要达到这种级别的客户体验交付,就需要听取用户需求,响应他们每次点击、决策和转化时形成的数据和其他指标。然而,很少有品牌能够将其数字生态系统充分集成,以接收来自整个企业的多元且各异的用户数据并将其转化为动态的、可操作的、客户优先的体验。 为了持续大规模地交付个性化体验,企业需要先聚焦于内部的数字生态系统、统一的客户资料和基于人工智能的机器学习工具,并着眼于交付卓越、令人愉悦的客户体验。 强大的数字化基础
发表于 2020-10-15
海康威视AI网络云台摄像机拆解:卖599凭的是什么?
本期硬核拆评拆解产品:海康威视旗下的萤石 AI 网络云台摄像机。 看过我之前视频的小伙伴可能有这样的疑问,前几期我已经拆过一个萤石的网络摄像头(萤石 C2c IP 摄像头拆解:神秘芯片加持,让你破解不了的方案?),为何再来一次?拿钱了?当然是 no! 首先,两者定位不同,前一次拆解的是入门款,这个是高端款;其次,功能不同,前一个仅仅是基础的监视,这个是监视加 AI 人脸检测等等等等功能;再者,性能也不同,前者只能看完整的画面,但是对于细节模糊不清;而这个可以自动对面部追踪放大看清楚细节,尤其是人脸,所以,相对于前一期拆解的摄像头,这个无论是在功能还是性能上都是碾压的,当然价格上同样碾压,599 元。 &
发表于 2020-10-12
海康威视AI网络云台摄像机拆解:卖599凭的是什么?
贸泽推出《人工智能:生命科学的下一波浪潮》电子书
贸泽电子 (Mouser Electronics) 宣布推出智能革命系列的第一本电子书《人工智能:生命科学的下一波浪潮》。在这本电子书中,来自贸泽与生命科学领域的专家共同探讨了人工智能 (AI) 领域的前沿应用,比如语言治疗、流感预防和野生动物保护等。这个备受关注的新推AI系列是贸泽屡获殊荣的Empowering Innovation Together™计划的最新活动。 贸泽电子亚太区市场及商务拓展副总裁田吉平女士表示:“我们很高兴能为客户和关注者提供此类启发性的内容。人工智能彻底改变了许多备受瞩目的产业,而我们现在看到的这种突破性技术正在推动生命科学领域冒出一批新型应用。‘智能
发表于 2020-10-12
贸泽推出《<font color='red'>人工智能</font>:生命科学的下一波浪潮》电子书
详解美信MAX78000边缘人工智能处理器
日前,Maxim Intergrated发布了其最新产品,一款低功耗的神经网络加速器芯片,适用于边缘人工智能。就人工智能加速器,低功耗,嵌入式以及该产品结合的RISC-V和Arm双内核等相关问题,All About Circuit采访了Maxim微处理器、安全和软件业务执行总监Kris Ardis。人工智能和物联网似乎是天作之合,然而要将这两种技术完美结合,还需要克服许多障碍。一般来说,物联网是一种低功耗、电池供电的技术。另一方面,人工智能,特别是卷积神经网络(对于机器视觉来说是必不可少的),算力非常昂贵。边缘计算提供实时数据处理为了克服这些挑战,通常的做法是将计算转移到云上。然而,这会带来大量的延迟和安全问题。例如,自动驾驶汽车
发表于 2020-10-12
详解美信MAX78000边缘<font color='red'>人工智能</font>处理器
恩智浦发起人工智能伦理倡议,让边缘ML、AI更安全的发展
恩智浦半导体(NXP Semiconductors N.V.,纳斯达克代码:NXPI)今日公开发起人工智能伦理倡议,强调了公司对人们工作和生活所使用的人工智能组件与系统(又称计算机网络的“边缘”)的伦理发展的承诺。有了安全的高能效边缘计算和人工智能,日常设备不仅可以感知环境,还能解读、分析所收集的数据并实时采取行动。 在名为《算法道德》的白皮书中,恩智浦详细介绍了人工智能原则的全面框架:不作恶、人类自主、可解释性、持续关注与警惕、以及通过设计确保隐私性与数据安全性。这些原则根植于恩智浦的企业价值观与道德准则中,并且在恩智浦构建全球复杂安全设备的悠久传统中得到了践行。人工智能框架是跨公司协作的产物,汇聚了全球工程团队及面向
发表于 2020-10-12
恩智浦发起<font color='red'>人工智能</font>伦理倡议,让边缘ML、AI更安全的发展
Deep AI开发业界首款集成人工智能训练和推理的边缘方案
DEEP AI日前宣布推出业界首个边缘深度学习应用,集成训练和推理解决方案。有了DEEP AI,边缘的每个推理节点也会成为一个训练节点,与当今以云为中心的人工智能方法相比,它能够实现更快、更便宜、可扩展和更安全的人工智能。DEEP AI的解决方案运行在现成的FPGA卡上,消除了对GPU的需求,与GPU相比,它的性能/功耗比或性能/成本比提高了10倍。因为无需关注FPGA硬件设计,对于设计人工智能应用程序的数据科学家和开发人员来说非常方便。支持标准的深度学习框架,包括Tensorflow、Pythorch和Keras。以往训练深度学习模型和服务推理需要昂贵、耗电量大的GPU提供大量计算资源,因此深度学习是在云端或大型内部数据中心
发表于 2020-10-10
小广播
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 电子设计 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved