AD9850与单片机接口电路的正弦信号发生器设计

2018-04-13来源: eefocus关键字:AD9850  单片机  正弦信号发生器

  1.引言

  随着数字大规模集成电路技术的发展,采用数字电路的直接数字频率合成技术(DDS)具有频率转换速度快。频率分辨率高。相位可控。频率稳定度高等优点。频率转换速度快。频率分辨率高的信号源在现代电子通讯。航空航天。自动控制等领域中是必不可少的,因此DDS信号源在上述领域获得广泛的应用。

  AD9850是ADI公司生产的低功耗直接数字频率合成技术典型产品之一,AD9850具有频率转换速度快。频率分辨率高。相位噪声低。频率稳定度高等优点。本论文设计的是以直接频率合成(DDS)器件AD9850和MCS-51单片机为核心,配合必要的外围接口器件,在单片机软件控制下,能够产生给定频率和起始相位的附加调制信息的正弦波信号发生器。

  2.AD9850的基本工作原理

  2.1AD9850的主要性能指标

  ①最大支持时钟频率为125MHz

  ②频率分辨率达到0.029Hz

  ③支持两种供电电压:+3.3Vor+5V

  ④低功耗:380mW@125MHz(+5V)

  155mW@110MHz(+3.3V)⑤频率转换时间:10个时钟周期。比如当fs=125MHz时,频率转换时间为:10&TImes;1/(125&TImes;106)≈0.1

  ⑥输出的无杂散动态范围SFDR大于50dB@40MHz

  ⑦具有相位可控

  ⑧支持并口和串口输入控制接口

  ⑨频率控制字采用32位二进制码

  2.2AD9850引脚说明

  AD9850采用了先进的CMOS工艺,采用28脚SSOP表面封装形式,其管脚如图1所示,引脚功能如表1.

AD9850与单片机接口电路的正弦信号发生器设计
AD9850与单片机接口电路的正弦信号发生器设计

  2.3AD9850内部结构

  AD9850的芯片功能框图如图2所示。

AD9850与单片机接口电路的正弦信号发生器设计

  AD9850芯片内包括高速DDS.10位DAC.频率/相位数据寄存器。数据输入寄存器。比较器等,在125MHz参考时钟下,AD9850经过高速的DDS核心芯片能产生一个32位频率调整控制字可使AD9850的输出频率达0.0291Hz;并能提供了5bits的相位控制位,它能使输出相位以180°.90°.45°.22.5°.11.25°或是它们任意组合的增量改变.AD9850的电路结构允许产生频率值是参考时钟的一半的输出,并且输出的频率能用数控方式以每秒产生23000000个新频率的速度变化.AD9850芯片内的比较器构成能接收经外部低通滤波后的DAC转换输出,可以产生一个低抖动的方波输出的装置,因此AD9850用作时钟发生器十分方便。频率/相位数据寄存器。数据输入寄存器在外部的频率更新时钟和字加载时钟的控制下进行频率控制字的输入和更新,使芯片输出所要求的频率和相位。

  2.4AD9850的工作原理

  AD9850内含可编程DDS系统和高速比较器,可实现全数字编程控制的频率合成。

  可编程DDS系统由相位累加器和正弦查表组成,其相位累加器由一个加法器和一个N位的相位寄存器组成,N一般为24~32;实质上是一个可变模的计数器,即DDS相位增量的个数在计数器收到每一个时钟脉冲时被存储起来,当计数器溢出时,它就回到初态并使用相位累加器输出到相邻值。频率控制字能设置计数器的模,它决定了相位增量的大小。相位增量在每个时钟到来时便在相位累加器中相加,相位增量越大,则累加器溢出的速度越快,产生的输出频率越高。

  AD9850采用32位的相位累加器,AD9850利用改进的,独有的算法,把14bits已截断的相位累加器的输出转变成适当的余弦值,经片内高速的10bitDAC转换器,可得到模拟正弦波。这个独特的算法使用一个简化了的ROM表和DSP技术等功能,有助于缩小AD9850的体积和功耗。输入。输出。参考时钟和频率控制字的关系如下:

AD9850与单片机接口电路的正弦信号发生器设计

  3.系统硬件设计

  3.1系统总体设计

  系统以单片机8051为控制核心,通过对AD9805内部的频率控制字和相位控制字进行软件编程,然后通过外接低通滤波器达到所需性能指标的正弦波信号。

  系统分为2个模块:单片机最小系统和DDS模块。单片机最小系统包括8051单片机.2*2中断键盘矩阵。串口通讯。下载接口。

  DDS模块包括核心芯片AD9850和低通滤波器。系统总体框图如图3所示。

AD9850与单片机接口电路的正弦信号发生器设计

  3.2AD9850与单片机接口

  AD9850与单片机接口电路,需要考虑以下几点:

  ①AD9850控制字写入方式选择.AD9850控制字的写入方式有串行和并行两种。并行写入方式的优点是数据传输的速度快,能够提升整个系统的处理速度,为了充分发挥芯片的高速性能,应在单片机资源允许的情况下尽可能选择并行方式,所以,本系统采用8051单片机作为控制核心,通过并行写入控制字的方式控制AD9850芯片。如图4所示,AD9850的数据线D0~D7与P1口相连。

AD9850与单片机接口电路的正弦信号发生器设计

  ②FQUD和WCLK与单片机连接.AD9850的FQUD控制信号和WCLK控制信号与分别与8051单片机的P3.0(10引脚)和P3.1(11引脚)相连,所有的时序关系均可通过软件控制实现。

  ③RESET与单片机连接.AD9850的晶体振荡器采用100MHz,AD9850的复位(RESET)信号为高电平有效,且脉冲宽度不小于5个参考时钟周期。由于单片机采用12MHz晶振时,它的高电平时间能够满足AD9850复位要求,故可将AD9850的复位端与单片机的复位端直接相连。

  3.3AD9850应用时需要注意的事项

  ①AD9850作为时钟发生器使用时,要避免混叠或谐波信号落入有用输出频带内,并减少外部滤波器的要求,必须要使输出频率小于参考时钟频率的33%.

  ②AD9850参考时钟频率最低为1MHz,低于此频率,系统自动进入电源休眠方式;高于此频率,系统恢复正常。

  ③印制线路板应采用多层板,要有专门的电源层和接地层,而且不能有引起层面不连续的蚀刻导线条。

  ④印制线路板的顶层应留有带一定间隙的接地面,以便为表面安装器件提供方便。

  ⑤印制线路板的AD9850器件下面不能走数字信号线,避免把噪声耦合进芯片;避免数字信号与模拟信号交叉,且它们在电路板相反两侧上的走线应彼此垂直,以减小电路板的馈通影响。

  ⑥时钟等快速开关信号应利用数字地屏蔽起来,以免向电路板上的其它器件辐射噪声,并且绝不应靠近基准输入或位于封装之下。

  ⑦要考虑用良好的去耦电路,分别把高质量的陶瓷去耦电容接到各自的接地引--去耦电容应尽可能靠近器件。

  ⑧采用独立的模拟电源和数字电源,AD9850电源线路应采用尽可能宽的走线,以提供低阻抗路径,并减小电源线路上的毛刺噪声影响.


关键字:AD9850  单片机  正弦信号发生器

编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/article_2018041338660.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于52单片机和DS12C887的高精度多功能电子钟
下一篇:基于单片机仿真器的设计详解

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

HAL库教程13:AD+DMA采集数据的滤波

  借助DMA可以快速采集大量数据,如果数据采集过来却不使用就是浪费。在我的板子上,AD值代表温度,如果系统检测到温度过高,可能会采取一些强制的保护措施。而AD采样是容易受干扰的,所以要对采样数据进行滤波,减少噪声对系统的干扰。接下来我们采用计算平均值的算法来滤波。  我们从每256个数据中,提取出1个算数平均值。2个通道,每个通道采集256个数据的话,共需要采集512个数据。由于DMA转换数据是循环进行的,如果等512个数据全部采集完,再做算数平均的话,新的数据已经采集完毕,旧的数据被覆盖,发生了改变。因此可以采用分两段处理的思想。  开启一个1024大小的数组,在前半段转化完成时,也就是前512个数据个数据已经处理完毕
发表于 2019-05-30

技术文章—简化用于过程控制的模拟输入模块的设计

而简单的信号链,缩短了开发时间,降低了设计成本。它利用ADI的专有iPassives™技术,将模拟前端和ADC融合在一起。这使得AD4111能够接受±10 V电压输入和0 mA至20 mA电流输入,同时无需外部组件即可在单个5 V或3.3 V电源下工作。电压输入指定为±20 V的超量程,在此范围内,该器件仍可在电压引脚上提供有效转换和±50 V的绝对最大规格。电流输入指定为-0.5 mA至24 mA的范围,可实现接近0 mA的准确电流测量,提供精确的24 mA转换。AD4111的电压输入保证最小阻抗为1MΩ。这样可以去除±15 V外部缓冲器,进一步节省电路板空间和BOM成本。5 V设计要求每个电压输入必须有一个高阻抗分压器,这会
发表于 2019-05-28
技术文章—简化用于过程控制的模拟输入模块的设计

STC12C5A60S2 AD 转换详解

STC系列单片机中的STC89LE516AD/X2提供了8路8位精度的高速A/D转换器,位于P1口上,从而省去了片外ADC的麻烦。这8路ADC为电压输入型,可做按键扫描,电池电压检测,频谱检测等。ADC转换过程需要17个机器周期。通过对相关功能寄存器的适当配置,就可以控制其工作。下面就对相关功能寄存器进行介绍。A/D转换寄存器总表:(1)P1_ADC_EN:特殊功能寄存器P1.x作为A/D转换输入通道来用允许特殊功能寄存器。相应位为“1”时,对应的P1.x口作为A/D转换使用,内部上拉电阻自动断开。ADC_START是模拟/数字转换(ADC)启动控制位,设置为1时,开始转换。    
发表于 2019-05-21
STC12C5A60S2 AD 转换详解

五步打造战略合作伙伴,ADI助力加速迈向工业4.0

边缘连接的关键选择;收购讯泰(Hittite)使得ADI无线产品涵盖了从DC到100GHz的射频、微波解决方案;通过并购确定性以太网半导体和软件解决方案的领先供应商Innovasic,获得的基于fido5000 REM系列交换芯片掌握一整套多协议工业以太网解决方案;成功收购德国Symeo 公司引入面向工业和汽车市场的创新RADAR技术…… ADI的工业4.0“方法论”,关键五步助愿景落地在本次研讨会上,Roger的演讲主要从五个方面讲述ADI助力走上工业4.0快车道的方法论,概要起来讲是五个“加速”:加速软件可配置系统;加速边缘到云连接;加速设备健康监测;加速系统级安全;加速机器人集成。 部署软件可配置系统,加速
发表于 2019-05-10
五步打造战略合作伙伴,ADI助力加速迈向工业4.0

PCF8591组件(A/D和D/A转换)

;   I2Cstop();     return val;}/* ADC转换值转为实际电压值的BCD码形式,arry-数组指针,val-AD转换值 */void uint8_tToArray(uint8_t * arry, uint8_t val) { arry[0] = (uint8_t)((uint16_t)val * 25 / 2550); //10^0 arry[1] = (uint8_t)((uint16_t)val * 25 / 255) % 10; //10^-1 arry[2] = (uint8_t)((uint16_t)val * 250 / 255) % 10
发表于 2019-05-09

MSP430F4250 AD解读

1.关于MSP430F4250:2.关于MSP430F4250 AD:参考MSP430X4XXFamily User’s Guide:关于16位AD采样有两种:2.1 MSP430F4250选的是哪种?其实并不是软件设置哪种,而是型号决定,由上述可知,MSP430F4250使用的是SD16_A2.2 MSP430F4250 AD的输入电压范围是多少?此时参考的手册需要更换为MSP430F42X0手册:2.3 MSP430F4250 AD的转换结果在哪?数据格式是什么?继续参考MSP430X4XX Family User’s Guide手册:AD的转换结果就在SD16MEMx这个寄存器里保存,数据格式和设置有关:其中SD16UNI
发表于 2019-05-07
MSP430F4250 AD解读

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved