STM32时钟配置方法详解

2019-06-13来源: eefocus关键字:STM32  时钟  配置方法

一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

①HSI是高速内部时钟,RC振荡器,频率为8MHz。

②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③LSI是低速内部时钟,RC振荡器,频率为40kHz。

④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:

①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能;第2种:分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面)节省2个外部电阻。

三、用HSE时钟,程序设置时钟参数流程:
01、将RCC寄存器重新设置为默认值   RCC_DeInit;
02、打开外部高速时钟晶振HSE    RCC_HSEConfig(RCC_HSE_ON);
03、等待外部高速时钟晶振工作    HSEStartUpStatus = RCC_WaitForHSEStartUp();
04、设置AHB时钟         RCC_HCLKConfig;
05、设置高速AHB时钟     RCC_PCLK2Config;
06、设置低速速AHB时钟   RCC_PCLK1Config;
07、设置PLL              RCC_PLLConfig;
08、打开PLL              RCC_PLLCmd(ENABLE);
09、等待PLL工作   while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟        RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟    RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

/*******************************************************************************

* Function Name  : RCC_Configuration 

* Description    :  RCC配置(使用外部8MHz晶振)

* Input            : 无

* Output         : 无

* Return         : 无

*******************************************************************************/

void RCC_Configuration(void)

{

  /*将外设RCC寄存器重设为缺省值*/

  RCC_DeInit();

 

  /*设置外部高速晶振(HSE)*/

  RCC_HSEConfig(RCC_HSE_ON);   //RCC_HSE_ON——HSE晶振打开(ON)

 

  /*等待HSE起振*/

  HSEStartUpStatus = RCC_WaitForHSEStartUp();

 

  if(HSEStartUpStatus == SUCCESS)        //SUCCESS:HSE晶振稳定且就绪

  {

    /*设置AHB时钟(HCLK)*/ 

    RCC_HCLKConfig(RCC_SYSCLK_Div1);  //RCC_SYSCLK_Div1——AHB时钟= 系统时钟

 

    /* 设置高速AHB时钟(PCLK2)*/ 

    RCC_PCLK2Config(RCC_HCLK_Div1);   //RCC_HCLK_Div1——APB2时钟= HCLK

 

    /*设置低速AHB时钟(PCLK1)*/    

RCC_PCLK1Config(RCC_HCLK_Div2);   //RCC_HCLK_Div2——APB1时钟= HCLK / 2

 

    /*设置FLASH存储器延时时钟周期数*/

    FLASH_SetLatency(FLASH_Latency_2);    //FLASH_Latency_2  2延时周期

   

 /*选择FLASH预取指缓存的模式*/  

    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);       // 预取指缓存使能

 

    /*设置PLL时钟源及倍频系数*/ 

    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);     

// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9

   

  /*使能PLL */

    RCC_PLLCmd(ENABLE); 

 

    /*检查指定的RCC标志位(PLL准备好标志)设置与否*/   

    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)      

       {

       }

 

    /*设置系统时钟(SYSCLK)*/ 

    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); 

//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

 

    /* PLL返回用作系统时钟的时钟源*/

    while(RCC_GetSYSCLKSource() != 0x08)        //0x08:PLL作为系统时钟

       { 

       }

     }

 

 /*使能或者失能APB2外设时钟*/    

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | 

RCC_APB2Periph_GPIOC , ENABLE); 

//RCC_APB2Periph_GPIOA    GPIOA时钟

//RCC_APB2Periph_GPIOB    GPIOB时钟

//RCC_APB2Periph_GPIOC    GPIOC时钟

//RCC_APB2Periph_GPIOD    GPIOD时钟

}

五、时钟频率

STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。

在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。

文件开头就有一个这样的定义: 
//#define SYSCLK_FREQ_HSE    HSE_Value 
//#define SYSCLK_FREQ_20MHz 20000000 
//#define SYSCLK_FREQ_36MHz 36000000 
//#define SYSCLK_FREQ_48MHz 48000000 
//#define SYSCLK_FREQ_56MHz 56000000 
#define SYSCLK_FREQ_72MHz 72000000

ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:
#define SYSCLK_FREQ_72MHz 72000000 
也就是103系列能跑到的最大值72M

然后这个 C文件继续往下看 
#elif defined SYSCLK_FREQ_72MHz 
const uint32_t SystemFrequency         = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);
const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: 
#elif defined SYSCLK_FREQ_72MHz 
static void SetSysClockTo72(void);

这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而
SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了

所以设置系统时钟的流程就是: 
首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:

第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000 
第二个:调用SystemInit()


关键字:STM32  时钟  配置方法

编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic464499.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:STM32F407时钟设置
下一篇:STM32 KEIL _MAP文件解析

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

集性能、紧凑、灵活、能效于一身,ST8引脚STM32微控制器问市

意法半导体8引脚STM32微控制器(MCU)现已上市,紧凑、经济的封装让简单的嵌入式开发项目也能利用32位MCU的性能和灵活性。 新推出的四款STM32G0 微控制器是8引脚经济性和32位性能的完美组合,在市场绝无仅有,基于59 DMIPS的 64MHzArm®Cortex®-M0 + CPU,片上高达8KB的RAM和32KB闪存,高性能外设包括2.5Msps ADC、高分辨率定时器和高速SPI接口。灵活的I/O引脚映射和MCU内部功能,让设计人员轻松升级终端产品功能,不会牺牲电路板空间或物料清单成本。高稳定内部振荡器,在宽温度和宽压范围内精度达到±1%,为开发者节省了外部时钟元件。 
发表于 2019-09-20
集性能、紧凑、灵活、能效于一身,ST8引脚STM32微控制器问市

6.STM32外设函数分类

发表于 2019-09-20
6.STM32外设函数分类

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved