PIC单片机的查表程序设计

2019-12-02来源: elecfans关键字:PIC单片机  查表程序  子程序  带值返回

PIC的查表程序可以利用子程序带值返回的特点来实现。具体是在主程序中先取表数据地址放入W,接着调用子程序,子程序的第一条指令将W置入PC,则程序跳到数据地址的地方,再由“RETLW”指令将数据放入W返回到主程序。下面程序以F10放表头地址。


MOVLW  TABLE     ;表头地址→F10

MOVWF  10

MOVLW  1        ;1→W,准备取“1”的线段值

ADDWF  10,1      ;F10+W =“1”的数据地址

CALL  CONVERT

MOVWF  6        ;线段值置到B口,点亮LED

CONVERT MOVWF  2        ;W→PC TABLE

RETLW  0C0H      ;“0”线段值

RETLW  0F9H      ;“1”线段值

RETLW  90H       ;“9”线段值

9)“READ……DATA,RESTORE”格式程序

“READ……DATA”程序是每次读取数据表的一个数据,然后将数据指针加1,准备取下一个数据。下例程序中以F10为数据表起始地址,F11做数据指针。

POINTER  EQU  11   ;定义F11名称为POINTER

MOVLW   DATA

MOVWF   10     ;数据表头地址→F10

CLRF   POINTER   ;数据指针清零

MOVF   POINTER,0

ADDWF 10,0      ;W =F10+POINTER

INCF    POINTER,1  ;指针加1

CALL CONVERT      ;调子程序,取表格数据

CONVERT MOVWF   2    ;数据地址→PC

DATA  RETLW   20H    ;数据

RETLW 15H      ;数据

如果要执行“RESTORE”,只要执行一条“CLRF POINTER”即可。

PIC单片机的查表程序设计

10) 延时程序

如果延时时间较短,可以让程序简单地连续执行几条空操作指令“NOP”。如果延时时间长,可以用循环来实现。下例以F10计算,使循环重复执行100次。

MOVLW D‘100’

MOVWF 10

LOOP  DECFSZ 10,1   ;F10—1→F10,结果为零则跳

GOTO LOOP

延时程序中计算指令执行的时间和即为延时时间。如果使用4MHz振荡,则每个指令周期为1μS。所以单周期指令时间为1μS,双周期指令时间为2μS。在上例的LOOP循环延时时间即为:(1+2)*100+2=302(μS)。在循环中插入空操作指令即可延长延时时间:

MOVLW  D‘100’

MOVWF  10

LOOP   NOP

NOP

NOP

DECFSZ 10,1

GOTO LOOP

延时时间=(1+1+1+1+2)*100+2=602(μS)。

用几个循环嵌套的方式可以大大延长延时时间。下例用2个循环来做延时:

MOVLW   D‘100’

MOVWF   10

LOOP  MOVLW   D‘16’

MOVWF   11

LOOP1  DECFSZ   11,1

GOTO    LOOP1

DECFSZ   10,1

GOTO LOOP

延时时间=1+1+[1+1+(1+2)*16-1+1+2]*100-1=5201(μS)

11) RTCC计数器的使用

RTCC是一个脉冲计数器,它的计数脉冲有二个来源,一个是从RTCC引脚输入的外部信号,一个是内部的指令时钟信号。可以用程序来选择其中一个信号源作为输入。RTCC可被程序用作计时之用;程序读取RTCC寄存器值以计算时间。当RTCC作为内部计时器使用时需将RTCC管脚接VDD或VSS,以减少干扰和耗电流。下例程序以RTCC做延时:

RTCC  EQU  1

CLRF  RTCC    ;RTCC清0

MOVLW  07H

OPTION    ;选择预设倍数1:256→RTCC

LOOP  MOVLW  255   ;RTCC计数终值

SUBWF  RTCC,0

BTFSS STATUS,Z   ;RTCC=255?

GOTO LOOP

这个延时程序中,每过256个指令周期RTCC寄存器增1(分频比=1:256),设芯片使用4MHz振荡,则:

延时时间=256*256=65536(μS)

RTCC是自振式的,在它计数时,程序可以去做别的事情,只要隔一段时间去读取它,检测它的计数值即可。

12) 寄存器体(BANK)的寻址

对于PIC16C54/55/56,寄存器有32个,只有一个体(BANK),故不存在体寻址问题,对于PIC16C57/58来说,寄存器则有80个,分为4个体(BANK0-BANK3)。在对F4(FSR)的说明中可知,F4的bit6和bit5是寄存器体寻址位,其对应关系如下:

当芯片上电RESET后,F4的bit6,bit5是随机的,非上电的RESET则保持原先状态不变。

下面的例子对BANK1和BANK2的30H及50H寄存器写入数据。

例1.(设目前体选为BANK0)

BSF   4,5    ;置位bit5=1,选择BANK1

MOVLW  DATA

MOVWF  10H    ; DATA→30H

BCF   4,5

BSF   4,6   ;bit6=1,bit5=0选择BANK2

MOVWF  10H    ;DATA→50H

从上例中我们看到,对某一体(BANK)中的寄存器进行读写,首先要先对F4中的体寻址位进行操作。实际应用中一般上电复位后先清F4的bit6和bit5为0,使之指向BANK0,以后再根据需要使其指向相应的体。

注意,在例子中对30H寄存器(BANK1)和50H寄存器(BANK2)写数时,用的指令“MOVWF 10H”中寄存器地址写的都是“10H”,而不是读者预期的“MOVWF 30H”和“MOVWF 50H”,为什么?

让我们回顾一下指令表。在PIC16C5X的所有有关寄存器的指令码中,寄存寻址位都只占5个位:fffff,只能寻址32个(00H—1FH)寄存器。所以要选址80个寄存器,还要再用二位体选址位PA1和PA0。当我们设置好体寻址位PA1和PA0,使之指向一个BANK,那么指令“MOVWF 10H”就是将W内容置入这个BANK中的相应寄存器内(10H,30H,50H,或70H)。

有些设计者第一次接触体选址的概念,难免理解上有出入,下面是一个例子:

例2:(设目前体选为BANK0)

MOVLW  55H

MOVWF  30H   ;欲把55H→30H寄存器

MOVLW  66H

MOVWF  50H   ;欲把66H→50H寄存器

以为“MOVWF 30H”一定能把W置入30H,“MOVWF 50H”一定能把W置入50H,这是错误的。因为这两条指令的实际效果是“MOVWF 10H”,原因上面已经说明过了。所以例2这段程序最后结果是F10H=66H,而真正的F30H和F50H并没有被操作到。

建议:为使体选址的程序清晰明了,建议多用名称定义符来写程序,则不易混淆。   例3:假设在程序中用到BANK0,BANK1,BANK2的几个寄存器如下:

A   EQU  10H   ;BANK0

B   EQU  10H   ;BANK1

C   EQU  10H   ;BANK2

FSR  EQU  4

Bit6  EQU  6

Bit5  EQU  5

DATA  EQU  55H

MOVLW  DATA

MOVWF  A

BSF   FSR,Bit5

MOVWF  B     ;DATA→F30H

BCF   FSR,Bit5

BSF   FSR,Bit6

MOVWF  C     ;DATA→F50H

程序这样书写,相信体选址就不容易错了。

13) 程序跨页面跳转和调用

下面介绍PIC16C5X的程序存储区的页面概念和F3寄存器中的页面选址位PA1和PA0两位应用的实例。

(1)“GOTO”跨页面

例:设目前程序在0页面(PAGE0),欲用“GOTO”跳转到1页面的某个地方

KEY(PAGE1)。

STATUS  EQU  3

PA1   EQU  6

PA0   EQU  5

BSF  STATUS,PA0  ;PA0=1,选择PAGE页面

GOTO  KEY      ;跨页跳转到1页面的KEY

KEY   NOP     ;1页面的程序

(2)“CALL”跨页面

例:设目前程序在0页面(PAGE0),现在要调用——放在1页面(PAGE1)的子程序DELAY。

BSF  STATUS,PA0   ;PA0=1,选择PAGE1页面

CALL  DELAY      ;跨页调用

BCF  STATUS,PA0   ;恢复0页面地址

DELAY NOP       ;1页面的子程序

注意:程序为跨页CALL而设了页面地址,从子程序返回后一定要恢复原来的页面地址。

(3)程序跨页跳转和调用的编写

读者看到这里,一定要问:我写源程序(.ASM)时,并不去注意每条指令的存放地址,我怎么知道这个GOTO是要跨页面的,那个CALL是需跨页面的? 的确,开始写源程序时并知道何时会发生跨页面跳转或调用,不过当你将源程序汇编时,就会自动给出。当汇编结果显示出:

X X X(地址)“GOTO out of Range“

X X X(地址)“CALL out of Range”

这表明你的程序发生了跨页面的跳转和调用,而你的程序中在这些跨页GOTO和CALL之前还未设置好相应的页面地址。这时应该查看汇编生成的.LST文件,找到这些GOTO和CALL,并查看它们要跳转去的地址处在什么页面,然后再回到源程序(.ASM)做必要的修改。一直到你的源程序汇编通过(0 Errors and Warnnings)。

(4)程序页面的连接

程序4个页面连接处应该做一些处理。一般建议采用下面的格式: 即在进入另一个页面后,马上设置相应的页面地址位(PA1,PA0)。 页面处理是PIC16C5X编程中最麻烦的部分,不过并不难。只要做了一次实际的编程练习后,就能掌握了。

关键字:PIC单片机  查表程序  子程序  带值返回 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic481668.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:在处理PIC单片机的中断服务程序时需要注意哪些问题
下一篇:基于PIC单片机的直流电机测速程序设计

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

PIC单片机位域结构的应用解析
在写程序中遇到要用标志位的情况,以为可以和keil51一样进行位定义,虽知道一直报错,后来才知道MC18编译器是不支持位定义的(PICC18编译器倒是支持的)下面给出一种解决办法—》位域结构体。有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。一、位域的定义和位域变量的说明位域定义
发表于 2019-12-02
PIC单片机位域结构的应用解析
基于PIC单片机的直流电机测速程序设计
定时器(Timer1和/或TImer3)必须运行在定时器模式或同步计数器模式。在异步计数器模式下,无法进行捕捉操作。用于每个CCP模块的定时器由T3CON寄存器选择。u当捕捉模式改变时,可能会产生错误捕捉中断。用户应该保持CCPxIE中断使能位清零,以避免错误中断。还应该在工作模式发生任何改变之后清零中断标志位CCPxIF。u在捕捉模式下有4种预分频比值设置,它们可作为工作模式的一部分由模式选择位(CCPxM3:CCPxM0)选择。每当关闭CCP模块或禁止捕捉模式时,预分频计数器就将被清零。这意味着任何复位都将清零预分频计数器。下面是在SP9608-PIC单片机增强型开发板调试的直流电机测速实验源程序,将RC2/CCP1引脚设置为输入引脚
发表于 2019-12-02
基于PIC单片机的直流电机测速程序设计
在处理PIC单片机的中断服务程序时需要注意哪些问题
中断服务程序中避免打开全局中断允许位,因为PIC单片机不支持中断嵌套,否则在执行一个中断服务程序还未结束就进入另一个中断服务程序后,上一个中断的现场参数将遭到破坏,从而导致程序产生不可预知的错误。
发表于 2019-12-02
在处理PIC单片机的中断服务程序时需要注意哪些问题
51单片机与PIC单片机和AVR单片机的性能对比分析
,它们都兼容8051的指令系统。增强功能的实现,大都是由片内新增的特殊功能寄存器来进行设置,这些寄存器被安排在片内特殊功能寄存器区间(80~FFH)的预留地址上。比较有代表性的产品还有STC89C51RC、C8051F331/330等等。可以这么说,新的51产品几乎可以涵盖所有新的功能。由于新型号的芯片种类太多,此处不可能一一列举,读者可根据使用的需求查阅相关的资料。2.PIC系列PIC单片机系列是美国微芯公司(Microship)的产品,是当前市场份额增长最快的单片机之一。CPU采用RISC结构,分别有33、35、58条指令(视单片机的级别而定),属精简指令集。而51系列有111条指令,AVR单片机有118条指令,都比前者复杂。采用
发表于 2019-12-02
51单片机与PIC单片机和AVR单片机的性能对比分析
PIC单片机的各种内部硬件功能及用法介绍
pic单片机是这个时代的宠儿,而在往期pic单片机相关文章中,小编曾对pic单片机的I/O接口进行过阐述,但I/O并非pic单片机内部硬件资源的全部内容。因此在本文中,将对pic单片机的各种内部硬件资源加以介绍,以帮助大家全面掌握pic单片机打下夯实基础。数据存储器在单片机PIC16F84中,除了有存放程序的程序存储器外,还有数据存储器。单片机在执行程序过程中,往往需要随时向单片机输入一些数据,而且有些数据还可能随时改变。在这种情况下就需用数据存储器。由于数据存储器不但要能随时读取存放在其各个单元内的数据,而且还需随时写进新的数据,或改写原来的数据。因此,数据存储器需由随机存储器RAM构成。RAM存储器在断电时,所存数据随即丢失
发表于 2019-12-02
PIC单片机的各种内部硬件功能及用法介绍
PIC单片机在ICD 上做一个简单的查表程序
include <p16f877.inc>status equ 03h ;2004/4/28rp0 equ 05h ;z equ 02h ;1-2-3-9-1pcl equ 02hportd equ 08htrisd equ 88hmm equ 20hCount equ 22hCount1 equ 23hCount2 equ 24horg 10startbsf status,rp0clrf trisdbcf status,rp0movlw 0movwf mmmaincall table ;mm=0查表返回后mm=b'11111000'movwf portdcall delayincf mmmovlw
发表于 2019-10-19
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved