基于STM8的IIC协议--协议篇

2019-12-04来源: eefocus关键字:STM8  IIC协议  协议

1. 综述


  I2C(IIC,Inter-Integrated Circuit),两线式串行总线,由PHILIPS公司开发用于连接微控制器及其外围设备。


  它是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU和被控IC之间、IC与IC之间进行双向传送,高速IIC总线一般可达400kbps以上。但在STM8中,400kHZ已经是最快速度了。


2.关于STM8S103手册的I2C简介

芯片手册中只对I2C的特点进行了简单的讲解,但并未深入解析其中的过程。


3. I2C详细解析


  I2C总共由五个核心函数,分别为:①起始信号②停止信号③应答信号④发送数据⑤接收数据,通过这五个核心基本函数就能于大多数的传感进行通信了。


3.1 起始信号


  当SCL为高电平期间,SDA由高电平到低电平的跳变过程;起始信号是一种电平跳变时序信号,而不是一个电平信号,如图虚线框所示。


3.2 停止信号


  当SCL为高电平期间,SDA由低电平到高电平的跳变过程;停止信号也是一种电平跳变时序信号,而不是一个电平信号,如图虚线框所示。

3.3 应答信号


  I2C的数据字节定义为8位长,对于发送端每发送1个字节后,需要将数据线(SDA)释放,由接收端反馈一个应答信号(ACK)。应答信号为低电平时,则将其规定为有效信号(ACK简称应答位),表示接收端已经成功接收了该字节;应答位为高电平时,规定为非应答位(NACK),一般表示接收端没有成功接收该字节。


  对于反馈有效应答位ACK的要求是,接收端在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间为稳定的低电平。如果接收端是主机,则在它接收到最后一个字节后,发送一个NACK信号,以通知发送端结束数据发送,并释放SDA线,以便主机接收端发送一个停止信号。

3.4 发送数据


  在发送起始信号后开始通信,主机发送一个8位数据。然后,主机释放SDA线并等待从从机发出得确认信号(ACK)。详细过程请看4.3.7代码示例。


3.5 接收数据


  在发送起始信号后开始通信,主机发送一个8位数据。然后,从机收到数据返回一个确认信号(ACK)给主机,这时候主机才开始接收数据,待主机接收数据完成后,发送一个NACK信号给从机,以通知接收端结束数据接收。详细过程请看4.3.8代码示例。


3.6 数据有效性


  I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电平或低电平状态才允许变化。


3.7 I2C通信总过程 

4. 例程


4.1 编译环境:


  我的编译环境是IAR,这款软件是现在STM8的主流平台,比较推荐。不过我打算等到STCubeMX更新出比较方便的版本后再去使用Keil5,因为我在用STM32的时候就是利用Keil5,的确很方便,你们也可以学着用一下。


4.2 主芯片:


  我的主芯片是STM8S系列中的103,其中STM8S的003、005、和103、105,配置一样(外设和CPU频率,FLASH),在代码相同的情况下均可进行烧写。


4.3 代码&解析


  I2C的基本函数代码我已经和传感的代码区隔开来,可以移植,几乎适用于市面上使用I2C驱动的传感器。


4.3.1 SDA、SCL引角初始化


1   //IIC引脚 

2   GPIO_Init(IIC_SCL_GPIO_Port, IIC_SCL_Pin, GPIO_MODE_OUT_PP_HIGH_FAST);

3   GPIO_Init(IIC_SDA_GPIO_Port, IIC_SDA_Pin, GPIO_MODE_OUT_PP_HIGH_FAST);

 

  在引角的控制上面,我选择了直接操作GPIO的寄存器,这样操作比较快,虽然我们感觉不出来,但是省出来的时间越来越多了,也就能够体现出这样写的好处了,不过不理解怎么用的话,也可以使用库函数进行写高、低电平。


  我在SDA引角初始化的时候,选择了推挽输出_高电平_高速,这里就有人会有疑问了,SDA是会进行接收ACK信号的,需要接收即为输入模式,怎么这里改成输出模式,看过我STM8_GPIO介绍的博客的小伙伴应该会想到,怎么不使用开漏输出,这个模式既能接收也能发送。没错,开漏输出模式的确可以,但我在那篇博客中也有说到,开漏输出模式不稳定,通过示波器观察到是斜三角的,而推挽输出是完整的矩形。图我就懒得去弄了 -。-  ,而如何解决推挽输出能够接收ACK的操作看我下一小节。


4.3.1 I2C结构体和引角配置


  这里的结构体是方便I2C多线程,以后需要用到多个I2C接口时候,只需要再定义多一个该结构变量,赋予其他引角便可,省去了再次编写代码的时间和空间。


  我在26和26行编写了两行代码,分别是将SDA模式改成输出和输入模式,直接更改寄存器里的值就能完成实现模式的更换,想知道为什么这样写可以改变模式的话,可以自行百度,也可以察看相对应芯片的寄存器手册。STM8S103中的则在6.2小节中就有介绍。因为讲解起来比较麻烦,这里就不进行更深入的说明了。


 1 /* Struct --------------------------------------------------------------------*/

 2 

 3 typedef struct iic

 4 {

 5   //具体信息:引脚 读写判定

 6   GPIO_TypeDef * pSCL_Port;       //SCL Gpio

 7   uint8_t        uSCL_Pin;        //SCL Pin

 8   GPIO_TypeDef * pSDA_Port;       //SDA Gpio

 9   uint8_t        uSDA_Pin;        //SDA Pin

10   

11   uint8_t        uSDA_Mode_Pin_Position;//SDA Mode

12 

13 }IIC_HandleTypedef;

14 

15 

16 

17 /* Define --------------------------------------------------------------------*/

18 

19 #define IIC_SCL_1(_HANDLE_)  ( (_HANDLE_)->pSCL_Port->ODR |= ( (uint8_t)(_HANDLE_)->uSCL_Pin))

20 #define IIC_SCL_0(_HANDLE_)  ( (_HANDLE_)->pSCL_Port->ODR &= (~(uint8_t)(_HANDLE_)->uSCL_Pin))

21                                   

22 #define IIC_SDA_1(_HANDLE_)  ( (_HANDLE_)->pSDA_Port->ODR |= ( (uint8_t)(_HANDLE_)->uSDA_Pin))

23 #define IIC_SDA_0(_HANDLE_)  ( (_HANDLE_)->pSDA_Port->ODR &= (~(uint8_t)(_HANDLE_)->uSDA_Pin))

24 #define IIC_SDA_R(_HANDLE_)  ( (BitStatus)(_HANDLE_)->pSDA_Port->IDR & (_HANDLE_)->uSDA_Pin)

25 

26 #define IIC_GPIO_SDA_MODE_Opt(_HANDLE_)  (_HANDLE_)->pSDA_Port->ODR |=    (uint8_t)1<<(_HANDLE_)->uSDA_Mode_Pin_Position

27 #define IIC_GPIO_SDA_MODE_Ipt(_HANDLE_)  (_HANDLE_)->pSDA_Port->ODR &=  ~((uint8_t)1<<(_HANDLE_)->uSDA_Mode_Pin_Position)


 4.3.2 延时函数


  延时函数顾名思义,就单纯的延时,延时时间可以根据芯片的速率调整,具体时间通过示波器或者可以观察到脉冲的仪器进行测量即可。


  这里定义了两个延时函数目的是在SCL低电平期间先提前改变SDA的电平,待到SDA电平稳定时,再将SCL电平改变进行读取。


 1 void vIIC_Delay_4us(void)    

 2 {

 3   uint8_t i=3;

 4   while(i--)

 5   {

 6     asm(" NOP");asm(" NOP");asm(" NOP");asm(" NOP");

 7   }

 8     

 9 }

10 

11 void vIIC_Delay_2us(void)    

12 {

13   asm(" NOP");asm(" NOP");asm(" NOP");

14 }

 

4.3.3 IIC引角赋值&结构体参数初始化


  每次调用I2C接口时都需要对IIC的句柄进行初始化。


 1 void vIIC_Handle_Init(IIC_HandleTypedef * hIICx, GPIO_TypeDef * pSCL_Port, uint8_t uSCL_Pin, GPIO_TypeDef * pSDA_Port, uint8_t uSDA_Pin)

 2 {

 3   //GPIO 

 4   hIICx->pSCL_Port = pSCL_Port;

 5   hIICx->uSCL_Pin  = uSCL_Pin ;

 6   hIICx->pSDA_Port = pSDA_Port;

 7   hIICx->uSDA_Pin  = uSDA_Pin ;

 8     

 9     

10   switch(uSDA_Pin)

11   {

12     case GPIO_PIN_0 : hIICx->uSDA_Mode_Pin_Position = 0 ;break;

13     case GPIO_PIN_1 : hIICx->uSDA_Mode_Pin_Position = 2 ;break;

14     case GPIO_PIN_2 : hIICx->uSDA_Mode_Pin_Position = 4 ;break;

15     case GPIO_PIN_3 : hIICx->uSDA_Mode_Pin_Position = 6 ;break;

16     case GPIO_PIN_4 : hIICx->uSDA_Mode_Pin_Position = 8 ;break;

17     case GPIO_PIN_5 : hIICx->uSDA_Mode_Pin_Position = 10;break;

18     case GPIO_PIN_6 : hIICx->uSDA_Mode_Pin_Position = 12;break;

19     case GPIO_PIN_7 : hIICx->uSDA_Mode_Pin_Position = 14;break;

20         

21   }

22 }

 

4.3.4 起始信号


  这里与3.1讲解的操作有点不同,就是3.1中最后没有将SCL拉低包括在内,而为了发送数据的方便,我也将SCL在此函数中拉低了。


 1 void vIIC_Start_Signal(IIC_HandleTypedef * hIICx)

 2 {

 3     

 4   IIC_SDA_1        (hIICx);                        //拉高数据线    

 5   IIC_SCL_1        (hIICx);                        //拉高时钟线

 6   vIIC_Delay_4us   (     );                        //延时

 7   IIC_SDA_0        (hIICx);                        //拉低数据线

8 vIIC_Delay_4us ( );

[1] [2] [3]
关键字:STM8  IIC协议  协议 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic481986.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于STM8的ADC读取---STM8-第四章
下一篇:解决STM8类型单片机空间太小,使用不了printf串口打印问题

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

74LS164 for stm32 源码
:74LS164.c---------------------------------------------------------------------------------------------------------------------------------------------#include "stm32f10x.h"#include "stm32f10x_rcc.h"#include "stm32f10x_gpio.h"#include "74LS164.h"/* 延时模块82615468 sp-320-12 * */static void delay(u32 t){ u32 i; while(t--) for (i = 0; i < 1; i++);}void Ls164Init(void){ GPIO_InitTypeDef
发表于 2019-12-11
74LS164 for stm32 源码
STM32 SysTick定时器应用【worldsing笔记】
SysTick是CM内核独立的定时器,时钟可以用内核内部的,也可以用芯片厂家(ST)的时钟,参考《Cortex-M3权威指南》的第13章: 另外也可以考《STM32F10xxx Cortex-M3 programming manual.pdf》第4章CM3系统外设,从手册来看,ST应该只提供了内核外部时钟,而外部时钟又分成两种:HCLK/8 和 HCLK,  ST官方提供了库直接可以操作SYSTICK,但不同的版本使用起来有些区别: 在V2.0的版本中对SysTick的操作是使用的stm32f10x_systick.c和stm32f10x_systick.h void
发表于 2019-12-11
STM32 SysTick定时器应用【worldsing笔记】
Keil uCos 2.52 stm32 【worldsing笔记】
;    RevBit(LED_GPIO->ODR, 12)           /*LED 状态反转                              */ 2、stm32 Lib V3.5 
发表于 2019-12-11
stm32_CAN总线知识
一、CAN总线的特点:bxCAN主要特点● 支持CAN协议2.0A和2.0B主动模式● 波特率最高可达1兆位/秒● 支持时间触发通信功能发送● 3个发送邮箱● 发送报文的优先级特性可软件配置● 记录发送SOF时刻的时间戳接收● 3级深度的2个接收FIFO● 可变的过滤器组:─ 在互联型产品中,CAN1和CAN2分享28个过滤器组─ 其它STM32F103xx系列产品中有14个过滤器组● 标识符列表● FIFO溢出处理方式可配置● 记录接收SOF时刻的时间戳时间触发通信模式● 禁止自动重传模式● 16位自由运行定时器● 可在最后2个数据字节发送时间戳管理● 中断可屏蔽● 邮箱占用单独1块地址空间,便于提高软件效率双CAN● CAN1
发表于 2019-12-11
stm32_CAN总线知识
STM8L051F3_03_CLK应用
本文介绍STM8L的CLK相关知识。内容分为以下几部分:CLK简介系统时钟频率切换1、CLK简介STM8L051F3的时钟控制系统设计时非常稳定的,同时也很容易使用,它可以使得MUC在低消耗下获仍然保持优性能。用户可以通过管理分配到CPU&外设的时钟来达到降低功耗。STM8L051F3有一个安全无干扰的时钟切换机制允许用户切换系统时钟源,同时可以通过预分频器来控制系统时钟频率。时钟结构图如下:注:STM8L051F3的Peripheral Clock enable是13 bit,没有LCD外设STM8L051F3的系统时钟源有以下4种:16MHz内部高速(出厂已校准)RC时钟HSI1~16MHz外部高速振荡器时钟
发表于 2019-12-11
STM8L051F3_03_CLK应用
低功耗版STM8L051的一个诡异配置
为了做个低功耗项目,从最便宜的STM8S003切换到低功耗系列里较便宜的STM8L051;在STM8S003上调通了HALT休眠处理后,最低待机电流是67uA;用了STM8L051后,实测能到2uA;但是后来遇到个诡异的问题,TIMER4莫名其妙不动作,好像不计时了。开关中断,改初始化配置,都没用,很奇怪。最后发现,是init'初始化的时候,没有给TIMER4配置CLK时钟源,导致的,原来的代码并没有写TIM4,        CLK_SYSCLKDivConfig(CLK_SYSCLKDiv_4);       
发表于 2019-12-11
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved