PIC单片机用于上位机数据采集的设计

2020-01-15来源: elecfans关键字:PIC单片机  上位机  数据采集

基本功能

在本设计中,数据的处理可以使用PC机的MATLAB等功能强大的软件,但是这类现有的数据处理软件并不能对特有的数据采集系统的下位机采集模块进行直接控制,因此需要针对特定的数据采集系统编写对应的上位机软件,上位机软件是针对上述目的而设计与编写的,是整个采集系统的控制前端和数据存储及处理中心。控制功能主要包括控制下位机采集的开始与终止,采集的频率等,数据处理功能主要包括绘制波形图,将数据显示于列表,将数据存储于文件,其中将数据存储于文件将便于使用现有的数据处理软件对数据进行一些数值算法处理,以达到科学研究,结论验证等目的。


开发环境

C++程序设计语言可以很好地实现面向对象的编程思想,采用C++编写上位机程序,可以将每一个功能模块封装成一个类,修改某个类的实现,增加类的功能不会影响整个程序的框架,这样就很容易维护和扩展功能;加之我们要实现的软件功能中需要调用大量的windows API函数库,所以采用VC++6.0作为上位机的开发环境。


程序功能模块划分

总的功能模块主要包括三个模块,即HID设备读写模块,数据采集模块,数据处理模块。

PIC单片机用于上位机数据采集的设计

HID设备的查找与读写

(1)枚举

USB主机在检测到USB设备插入后,就要对设备进行枚举了。枚举就是从设备读取一些信息,知道设备是什么样的设备,如何进行通信,这样主机就可以根据这些信息来加载合适的驱动程序。

(2)HID

人机接口设备(HID)是指直接和人进行互动的设备,如鼠标、键盘等。 在Windows 中,具有相似属性和提供相似服务的设备被归为一种设备类型,一种类型的设备可以使用一个通用的设备驱动程序。 在运行Windows 98 或更高版本的PC 机上,应用程序可以使用操作系统内置的HID 类驱动程序与HID 通信。 这样使得符合HID 类的USB 设备很容易开发与运行。

(3)HID设备的查找

在Windows操作系统中内置很多与HID有关的API函数,调用这些函数,就可以开始对指定的HID设备进行查找,查找HID设备的最终目的是获得该设备的路径名,设备的存取容量等信息,为以后对该设备进行读写做好准备。

PIC单片机用于上位机数据采集的设计

(4)HID设备的读写

在取得了HID设备的路径全面后,即可开始对HID设备进行读写,对设备的读写也是通过调用相应的函数来实现的。


控制下位机进行数据采集

上位机向下位机发送命令,控制下位机进行数据采集,并从下位机获取数据,在这个过程中,要处理好两个线程的同步的问题,即数据采集线程和数据处理线程能够协调工作,保正系统能正确稳定的工作。具体的解决方法是实现对某些数据访问的原子操作,即一个线程在对公共数据进行访问时,另一个线程不能打扰,直到操作线程操作完成,放弃对数据的使用权,另一个线程才能够访问数据。


下位机获取了关于采集的有关参数后,即可开始采集,每隔一定时间采集一个数据,当采集数据数目达到限制值个数后,本次采集完成,此时下位机才开始将采集数据发送给上位机。

PIC单片机用于上位机数据采集的设计

上位机对采集的数据的处理

上位机在将数据采集命令发送给下位机后,所要做的就是等待下位机采集完成并接收数据,因此上位机将循环查询下位机工作状态,一旦检测到下位机采集结束的标志,上位机就开始对数据进行处理。

数据处理分为三种:

(1)绘制波形图

绘制波形图的要求有两点:第一是不能频繁闪烁,影响观察;二是波形图是动态的,因为绘制区域有限,而所采集的数据是源源不断增加的,因此要求波形图能够动态的更新。

(2)添加到列表显示

可直观地查看目前所采集的所有数据。

(3)保存到文件

运用功能强大的数据处理软件对数据进行更深的处理。

界面显示

采集单极性正弦波工作界面

PIC单片机用于上位机数据采集的设计

代码:

1 HID设备通信模块实现代码/*hid.h头文件*/

2 #ifndef HID_H

3 #define HID_H

4 #include

5 #include

6 #include

7 #include “commonuse.h”

8 using std::string;

9 #pragma comment( lib, “setupapi.lib” )

10 extern “C” {

11 #include “hidsdi.h”

12 }

13 #pragma comment( lib, “hid.lib” )

14

15

16 class Hid

17 {

18

19 public:

20 Hid(const string &DeviceIdStr = MY_DEVICE_ID);

21 //Hid(DWORD Vid, DWORD Pid) {}

22 ~Hid() ;

23 BOOL Connect() ;

24 //BOOL ChangeDevice() {}

25 BOOL WriteHid(const BYTE * WriteBuff);

26 BOOL ReadHid(BYTE * ReadBuff);

27 BOOL IsWriteValid() const { return m_WriteValid ; }

28 BOOL IsReadValid() const { return m_ReadValid ; }

29 BOOL IsConnected() const { return m_IsConnected; }

30 const string & GetDeviceIDDesc() const { return m_DeviceIdStr ;}

31 private:

32 BOOL GetWRHandle() ;

33 private:

34 HANDLE m_WriteHandle;

35 HANDLE m_ReadHandle ;

36 string m_DeviceIdStr;//设备描述字符串

37 DWORD m_PID;

38 DWORD m_VID;

39 BOOL m_IsConnected ;//是否已连接上

40 BOOL m_ReadValid;//是否可进行读操作

41 BOOL m_WriteValid;//是否可进行写操作

42 BYTE m_RWBuff[USB_BUFF_SIZE+1] ;//读写缓冲

43

44

45 } ;

46

47

48

49 #endif

50

51

52 /*hic.cpp源文件*/

53

54 #include “Hid.h”

55

56 Hid::Hid(const string &DeviceIdStr):

57 m_DeviceIdStr(DeviceIdStr)

58 {

59

60 m_WriteHandle = INVALID_HANDLE_VALUE ;

61 m_ReadHandle = INVALID_HANDLE_VALUE ;

62 m_PID = 0;

63 m_VID = 0;

64 m_IsConnected = FALSE ;

65 m_ReadValid = FALSE ;

66 m_WriteValid = FALSE;

67 strcpy((char *)m_RWBuff,“”) ;

68 }

69

70 BOOL Hid::GetWRHandle()

71 {

72 GUID InterfaceClassGuid =

73 {0x4d1e55b2, 0xf16f, 0x11cf, 0x88, 0xcb, 0x00, 0x11, 0x11, 0x00, 0x00, 0x30};

74 HDEVINFO DeviceInfoTable = INVALID_HANDLE_VALUE;

75 PSP_DEVICE_INTERFACE_DATA InterfaceDataStructure = new SP_DEVICE_INTERFACE_DATA;

76 PSP_DEVICE_INTERFACE_DETAIL_DATA DetailedInterfaceDataStructure = new SP_DEVICE_INTERFACE_DETAIL_DATA;

77 SP_DEVINFO_DATA DevInfoData;

78

79 DWORD InterfaceIndex = 0;

80 DWORD StatusLastError = 0;

81 DWORD dwRegType;

82 DWORD dwRegSize;

83 DWORD StructureSize = 0;

84 PBYTE PropertyValueBuffer;

85 bool MatchFound = false;

86 DWORD ErrorStatus;

87 DeviceInfoTable = SetupDiGetClassDevs(&InterfaceClassGuid, NULL, NULL, DIGCF_PRESENT “ DIGCF_DEVICEINTERFACE);

88 while(true)

89 {

90 InterfaceDataStructure-》cbSize = sizeof(SP_DEVICE_INTERFACE_DATA);

91 if(SetupDiEnumDeviceInterfaces(DeviceInfoTable, NULL, &InterfaceClassGuid, InterfaceIndex, InterfaceDataStructure))

92 {

93 ErrorStatus = GetLastError();

94 if(ERROR_NO_MORE_ITEMS == ErrorStatus)

95 {

96 SetupDiDestroyDeviceInfoList(DeviceInfoTable);

97 return FALSE;

98 }

99 }

100 else

101 {

102

103 ErrorStatus = GetLastError();

104 SetupDiDestroyDeviceInfoList(DeviceInfoTable);

105 return FALSE;

106 }

107

108 DevInfoData.cbSize = sizeof(SP_DEVINFO_DATA);

109 SetupDiEnumDeviceInfo(DeviceInfoTable, InterfaceIndex, &DevInfoData);

110

111 SetupDiGetDeviceRegistryProperty(DeviceInfoTable, &DevInfoData, SPDRP_HARDWAREID, &dwRegType, NULL, 0, &dwRegSize);

112 Pr

关键字:PIC单片机  上位机  数据采集 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic485763.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:如何利用PIC单片机实现计时秒表功能
下一篇:PIC单片机的配置字用CONFIG命令的定义

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

PIC单片机ADC的编程设计
#include__CONFIG(0X1F71);#define uchar unsigned char#define uint unsigned intconst uchar Tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};const uchar Tab1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};//带小数点的代码 void DisPlay(uchar date1,uchar date2,uchar date3,uchar date4);void DelayMS(uint z){uint
发表于 2020-01-09
PIC单片机ADC的编程设计
PIC单片机实现LCD1602显示字母A
PIC单片机LCD1602显示单个A字程序STATUS EQU 3H ;定义状态寄存器地址PORTA EQU 5H ;定义RA口数据寄存器地址PORTC EQU 7H ;定义RC口数据寄存器地PORTD EQU 8H ;定义RD口数据寄存器地址TRISA EQU 85H ;定义RA口方向控制寄存器地址TRISC EQU 87H ;定义RC口方向控制寄存器地址TRISD EQU 88H ;定义RD口方向控制寄存器地址ADCON1 EQU 9FH ;定义ADC模块控制寄存器1的地址;********************Z EQU 2 ;定义0状态位的位地址RP0 EQU 5 ;定义页选位RP0的位地址
发表于 2020-01-09
PIC单片机实现LCD1602显示字母A
PIC单片机定时器1的实际应用
#define uint unsigned int__CONFIG(0x3B31);void init();uint intnum;void main(){init();while(1){/*if(intnum==20){intnum=0;RD0=!RD0;}*/}#include#define uchar unsigned char#define uint unsigned int__CONFIG(0x3B31);void init();uint intnum;void main(){init();while(1){/*if(intnum==20){intnum=0;RD0=!RD0;}*/}} void init(){
发表于 2020-01-09
PIC单片机定时器1的实际应用
PIC单片机对LED数码管矩阵键盘显示的设计
#include#include “。./head/config.h”__CONFIG(HS&WDTDIS&LVPDIS&PWRTEN);//对熔丝位进行设置单片机LED共阳极段码表(带小数点) 0~9const char table1[]={0X0A,0XFA,0X8C,0XA8,0X78,0X29,0X09,0XBA,0X08,0X28,0x18,0x49,0x0f,0xc8,0x0d,0x1d};数码管位码表const char table[] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};unsigned int result = 0,lastresult
发表于 2020-01-09
PIC单片机对LED数码管矩阵键盘显示的设计
PIC单片机定时器0的应用
#include#define uchar unsigned char#define uint unsigned int__CONFIG(0x3B31);void init();uint intnum;void main(){init();while(1){if(intnum==5){intnum=0;RD0=!RD0;}}}void init(){TRISD=0;PORTD=0;OPTION=0x07;INTCON=0xa0;TMR0=61;}void interrupt TIme0(){T0IF=0;TMR0=61;intnum++;}
发表于 2020-01-09
PIC单片机定时器0的应用
PIC单片机INT0中断的原理
RB0/INT0、RB1/INT1及RB2/INT2引脚的外部中断是边沿触发的;如果INTCON2 寄存器中相应的INTEDGx位被置1,则为上升沿触发;如果该 INTEDGx 位清零,则为下降沿触发。当RBx/INTx引脚上出现一个有效边沿时,相应标志位 INTxF 被置1 。在重新使能该中断前,必须在中断服务程序中先用软件将标志位INTxF 清零。通过对相应的使能位INTxE 清零,可以禁止该中断。如果INTxE 位在进入休眠状态前被置1 ,则所有的外部中断(INT0、INT1 及INT2)能把处理器从休眠状态中唤醒。如果全局中断使能位 GIE 被置1 ,则处理器将在唤醒之后转移到中断向量。INT1 和INT2 的中断
发表于 2020-01-09
PIC单片机INT0中断的原理
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved