AVR单片机实现对步进电机的细分控制及其应用

2020-02-08来源: eefocus关键字:AVR单片机  步进电机  细分控制

需求分析


本方案中使用的仪表具有如下特点和设计参数:


●指针响应灵敏、走位准确,即收到驱动脉冲后不能丢步;


●指针转动平稳,即指针从当前位置到目标位置之间的走位要平稳,正、反转都不能出现抖动;


●两相、步距角10o、转动范围300o。


根据技术参数可知,采用两相四拍和两相八拍时的步距角为10o和5o,在300o的范围内只能作30和60个刻度划分,在实际应用中,会发现指针步距角不能满足要求而且抖动不可避免。为了实现指针高精度的准确走位和平稳运转,要对步进电机步距进行高分辨率细分,这也是设计的难点所在。


步进电机


步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机某相线圈加一脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变得非常简单。虽然步进电机已被广泛地应用,但步进电机并不像普通的直流电机、交流电机那样在常规下使用。它必须在双环形脉冲信号、功率驱动电路等组成控制系统下使用。


仪表步进电机属于步进电机中体积、功耗较小的类别,可以由单片机或专用芯片的引脚直接驱动,不需外接驱动器,因而在仪表中被用于指针的旋转控制。


步进电机的细分技术是一种电子阻尼技术,其主要目的是提高电机的运转精度,实现步进电机步距角的高精度细分。其基本概念为:步进电机通过细分驱动器的驱动,其步距角变小了。如驱动器工作在10细分状态时,其步距角只为电机固有步距角的十分之一。以两相四拍为例:当电机工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动10o;而用细分驱动器工作在10细分状态时,电机只转动了1o。细分功能完全是由驱动器或单片机靠精确控制电机的相电流所实现的,与电机本身无关。


细分原理


两相四拍A、B、/A、/B的驱动状态表如表1所示。



两相八拍A、B、/A、/B的驱动状态表如表2所示。




从以上的分析可知,两相四拍是整步运转不细分,两相八拍其实是2细分。合成的磁场和电流矢量夹角以90o和45o的方式变化,如此往复循环。


参考相关资料后不难发现:细分驱动技术常用近似正弦波的阶梯型电流代替矩形波电流,产生一个微步旋转磁场,从而带动电机以更小的步距角转动,其电流波形和旋转磁场矢量如图1所示。同时由于正弦波电流变化平滑,使电机运行更平稳、噪声更小。即通过改变相邻两相(A,B)电流的大小和方向(A相正弦波和B相余弦波矢量叠加),以改变合成磁场的夹角,通过电流矢量合成的方式来控制步进电机运转。



硬件设计和软件编程


根据细分原理可知,对于两相步进电机,需要同时控制两组线圈的电压大小和方向才能达到合成电流矢量控制的目的,控制线圈的电流大小有两种方案:其一是通过单片机写入数字量,由数模转换器件输出模拟电压,控制线圈电流大小;其二是通过某些单片机自带的PWM引脚输出占空比可控的方波,用其交流有效值控制线圈电流大小。很显然,按照正弦规律变化的占空比决定了线圈电流大小也按照相同的正弦规律变化。线圈的电压施加方向可以通过逻辑门电路来实现。


综上,选用具有两路16位精度PWM功能的ATMEGA48单片机,外围硬件电路设计如图2。



使用该单片机具有PWM功能的PB1和PB2连接PWM_A和PWM_B,使用两个普通引脚连接DIR_A和DIR_B即可实现对电机的控制。原理说明如下:电机的A、/A、B、/B分别对应四输入与门电路的3、6、8、11引脚。在DIR_A和DIR_B为低电平时,门电路的1、9引脚为0状态,三极管Q3、Q4截止,门电路的4、12引脚由于上拉处于1状态,这样,与门电路的3、8输出为0,即A、B为0;此时与门电路的6、11输出与PWM_A和PWM_B保持一致,即/A、/B由PWM_A和PWM_B决定。在其他状态下,也具有同类特点:A和/A之间、B和/B之间的通电极性由DIR_A和DIR_B决定;A和/A之间、B和/B之间的电流大小由PWM_A和PWM_B的占空比决定。而且只要三极管Q3、Q4工作正常,与门电路就不会出现逻辑混乱的情况。


配合硬件的设计,软件上编写了一个由64个数据组成的数组,分别对应了0~90o正弦波幅度变化的8位数字量化值(以阶梯波的方式模拟了64点正弦波抽样),每个值用来控制输出波形占空比,实际上参与了电流矢量夹角转动90o过程中其电流大小的计算。众所周知,正弦、余弦波相位相差90o,在已知0~90o正弦波幅度变化表后,同样可以得出90o~180o、180o~270o、270o~360o(0o)的正弦波、余弦波幅度变化表,所以通过0~90o正弦波幅度变化的8位数字量化表的演化,就可以在两相八拍(二细分)的基础上把电流矢量夹角分成四个象限,配合极性的控制,在每个象限中把A或/A的正弦波和B或/B的余弦波作8种组合,在每种组合中完成电流大小的变化,最终作到两相64拍(16细分)的控制。而且,最巧妙的一点就在于:通过选择64个数据对应每90o范围的正弦波的64个点,就可以用一个字节的大小来作为区分4个象限的标志,便于对正、余弦的角度进行演化,即0~63对应0~90o,64~127对应90o~180o,128~191对应180o~270o,192~255对应270o~360o。



两相64拍A、B、/A、/B的驱动状态表如表3(以B为起始状态)。


由于仪表指针从当前角指向目标角时,变化量会有不同。为保证指针响应灵敏、无抖动,必须在正、反转时考虑加、减速控制。程序中,可以根据变化量的大小和正负设定几个控制区间,分别写入不同的延时参数,根据此延时参数来控制电流大小、方向(改变PWM_A和PWM_B、DIR_A和DIR_B)变化时间,就达到了加、减速的控制的目的。


结语


通过双PWM方式控制两相步进电机,既达到了高精度细分的目的,又在硬件成本上得到了优化。在现有电路的后级增加功率驱动电路并作程序的少量修改,就可以做成高精度、多细分步进电机驱动器。


关键字:AVR单片机  步进电机  细分控制 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic487566.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:有关AVR芯片后缀解释
下一篇:基于AVR的西瓜生产温室防灾控制系统

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

AVR单片机IAR AVR C语言中断编程
一、AVRmega16中断向量表向量号 程序地址 中断源 描述 IAR AVR中的定义 1 000 RESET 外部引脚电平引发的复位,上电复位,掉电检测复位,看门狗复位,以及JTAG AVR 复位 RESET_vect 2 002 INT0 外部中断请求0 INT0_vect 3 004 INT1 外部中断请求1 INT1_vect 4 006 TIMER2 COMP 定时器/计数 2 比较匹配 TIMER2_COMP_vect 5 008 TIMER2 OVF 定时器/计数 2 溢出 TIMER2_OVF_vect 6 00A TIMER1 CAPT 定时器/计数 1事件捕捉 TIMER_ CAPT_vect 7 00C
发表于 2020-03-04
基于AVR单片机与CH375的多通道核辐射探测数据采集系统
该系统采用了AVR单片机、高速器件及USB接口技术,采集速度快,死时间短,计数率高,通信量大。USB所具有的即插即用、通用性强、易扩展、可靠性高等优点改善了各探测通道的使用性能。它不仅是4MeV静电加速器不可缺少的重要组成部分,而且为加速器防辐射安全提供确切依据,同时还为加速器在动植物育种、放射治疗、材料改性、放射化学等诸多方面的应用研究提供可靠的技术数据。整个系统已通过省级科技成果鉴定,实际运行良好。在更换探头和稍作参数调整后,还可将该系统用于其它大范围场地多种辐射的监测。0 引言文中介绍了多个探测通道组成的多道核数据采集系统,对4MeV静电加速器核辐射进行监测防护。各个通道采用AVR单片机ATmega128作为主
发表于 2020-03-02
基于AVR单片机与CH375的多通道核辐射探测数据采集系统
AVR单片机在LED遥控照明中的应用
摘要:基于AVR单片机设计了一种LED遥控照明系统,给出了红外接收模块和LED驱动模块的设计方法,以及软件程序流程。经测试,该方案可行,具有一定的应用价值。引言LED照明已经进入了家庭用户,与传统的照明设备(如白炽灯、荧光灯)相比,具有光源单色纯度高、色彩多样、效率高、光强度可调等优点。针对传统照明亮度不易调节、开关位置固定的问题,本文基于AVR单片机设计了一种LED遥控照明系统,提出了LED照明灯的驱动与亮度调节的方法。1 LED照明灯控制系统原理系统原理图如图1所示。当红外接收器接收到红外遥控信号时,通过外部中断将AVR单片机从休眠模式中唤醒;AVR单片机开始解析红外信号,如果与系统地址匹配,则将根据解析到的命令改变
发表于 2020-03-02
AVR单片机在LED遥控照明中的应用
基于AVR单片机和CMX865的串口转FSK通信模块
和捕捉功能的16位定时/计数器、具有独立片内振荡器的可编程看门狗定时器等。ATmega48/88/168芯片硬件电路可以完全兼容,完全可以根据软件实际需求灵活选择AVR芯片,极大地方便系统的开发与研制。三、硬件设计图1为串口转FSK通信模块电路。系统主要以AVR单片机ATmega48芯片和CMX865调制/解调芯片为硬件架构,ATmega48芯片利用C-BUS总线对CMX865芯片进行控制操作,实现FSK通信。CMX865芯片的IRQN终端与CPU芯片的外部中断0(INT0)相连,确保软件可以采用中断方式接收/发送FSK数据。CMX865芯片的时钟信号、片选信号、响应应答数据信号、接收控制数据信号分别与ATmega48芯片的普通I/O
发表于 2020-02-29
基于AVR单片机和CMX865的串口转FSK通信模块
AVR单片机中左移位和右移位指令
计算机的指令系统是一套控制计算机操作的代码,称之为机器语言。计算机只能识别和执行机器语言的指令。为了便于人们理解、记忆和使用,通常用汇编语言指令来描述计算机的指令系统。汇编语言指令可通过汇编器翻译成计算机能识别的机器语言。AVR单片机指令系统是RISC结构的精简指令集,是一种简明易掌握﹑效率高的指令系统。SL-DIY02-3开发实验器使用AT90S8535单片机,有118条指令, 而我们所做的11个实验程序仅用了34条指令, 我们重点讲这34条指令, 其余指令就可自学了。AVR器件(指令速查表) 118条指令器件AT90S2313/2323/2343/2333 ,AT90S4414/4433/4434/8515,AT90S8534
发表于 2020-02-29
AVR单片机中左移位和右移位指令
分析AVR单片机优缺点
简介:AVR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片机。AVR的单片机可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。AVR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片机。AVR的单片机可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。avr单片机的特点及优点高可靠性、功能强、高速度、低功耗和低价位 , 一直是衡量单片机性能的重要指标,也是
发表于 2020-02-29
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved