AVR单片机的熔丝应该如何设置

2020-03-25来源: elecfans关键字:AVR单片机  熔丝  设置

初学者对熔丝经常不解,AVR芯片使用熔丝来设定时钟、启动时间、一些功能的使能、BOOT区设定、当然还有最让初学者头疼的保密位,设不好锁了芯片很麻烦。要想使MCU功耗最小也要了解一些位的设定。

1:未编程

0:编程

1、BOD(Brown-out Detection) 掉电检测电路

BODLEVEL(BOD电平选择): 1: 2.7V电平; 0:4.0V电平

BODEN(BOD功能控制): 1:BOD功能禁止;0:BOD功能允许

使用方法:如果BODEN使能(复选框选中)启动掉电检测,则检测电平由BODLEVEL决定。一旦VCC下降到触发电平(2.7v或4.0v)以下,MCU复位;当VCC电平大于触发电平后,经过tTOUT 延时周后重新开始工作。

因为M16L可以工作在2.7v~5.5v,所以触发电平可选2.7v(BODLEVEL=1)或4.0v(BODLEVEL=0);而M16工作在4.5~5.5V,所以只能选BODLEVEL=0,BODLEVEL=1不适用于ATmega16。


2、复位启动时间选择

SUT 1/0: 当选择不同晶振时,SUT有所不同。

如果没有特殊要求推荐SUT 1/0设置复位启动时间稍长,使电源缓慢上升。


3、CKSEL3/0: 时钟源选择(时钟总表)

时钟总表:

时钟源 启动延时 熔丝

外部时钟 6 CK + 0 ms CKSEL=0000 SUT=“00”

外部时钟 6 CK + 4.1 ms CKSEL=0000 SUT=“01”

外部时钟 6 CK + 65 ms CKSEL=“0000” SUT=“10”

内部RC振荡1MHZ 6 CK + 0 ms CKSEL=“0001” SUT=“00”

内部RC振荡1MHZ 6 CK + 4.1 ms CKSEL=“0001” SUT=“01”

内部RC振荡1MHZ1 6 CK + 65 ms CKSEL=“0001” SUT=“10”

内部RC振荡2MHZ 6 CK + 0 ms CKSEL=“0010” SUT=“00”

内部RC振荡2MHZ 6 CK + 4.1 ms CKSEL=“0010” SUT=“01”

内部RC振荡2MHZ 6 CK + 65 ms CKSEL=“0010” SUT=“10”

内部RC振荡4MHZ 6 CK + 0 ms CKSEL=“0011” SUT=“00”

内部RC振荡4MHZ 6 CK + 4.1 ms CKSEL=“0011” SUT=“01”

内部RC振荡4MHZ 6 CK + 65 ms CKSEL=“0011” SUT=“10”

内部RC振荡8MHZ 6 CK + 0 ms CKSEL=“0100” SUT=“00”

内部RC振荡8MHZ 6 CK + 4.1 ms CKSEL=“0100” SUT=“01”

内部RC振荡8MHZ 6 CK + 65 ms CKSEL=“0100” SUT=“10”

外部RC振荡≤0.9MHZ 18 CK + 0 ms CKSEL=“0101” SUT=“00”

外部RC振荡≤0.9MHZ 18 CK + 4.1 ms CKSEL=“0101” SUT=“01”

外部RC振荡≤0.9MHZ 18 CK + 65 ms CKSEL=“0101” SUT=“10”

外部RC振荡≤0.9MHZ 6 CK + 4.1 ms CKSEL=“0101” SUT=“11”

外部RC振荡0.9-3.0MHZ 18 CK + 0 ms CKSEL=“0110” SUT=“00”

外部RC振荡0.9-3.0MHZ 18 CK + 4.1 ms CKSEL=“0110” SUT=“01”

外部RC振荡0.9-3.0MHZ 18 CK + 65 ms CKSEL=“0110” SUT=“10”

外部RC振荡0.9-3.0MHZ 6 CK + 4.1 ms CKSEL=0110 SUT=“11”

外部RC振荡3.0-8.0MHZ 18 CK + 0 ms CKSEL=0111 SUT=“00”

外部RC振荡3.0-8.0MHZ 18 CK + 4.1 ms CKSEL=“0111” SUT=“01”

外部RC振荡3.0-8.0MHZ 18 CK + 65 ms CKSEL=0111 SUT=“10”

外部RC振荡3.0-8.0MHZ 6 CK + 4.1 ms CKSEL=“0111” SUT=“11”

外部RC振荡8.0-12.0MHZ 18 CK + 0 ms CKSEL=1000 SUT=“00”

外部RC振荡8.0-12.0MHZ 18 CK + 4.1 ms CKSEL=“1000” SUT=“01”

外部RC振荡8.0-12.0MHZ 18 CK + 65 ms CKSEL=“1000” SUT=“10”

外部RC振荡8.0-12.0MHZ 6 CK + 4.1 ms CKSEL=“1000” SUT=“11”

低频晶振(32.768KHZ) 1K CK + 4.1 ms CKSEL=“1001” SUT=“00”

低频晶振(32.768KHZ) 1K CK + 65 ms CKSEL=“1001” SUT=“01”

低频晶振(32.768KHZ) 32K CK + 65 ms CKSEL=“1001” SUT=“10”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 258 CK + 4.1 ms CKSEL=“1010” SUT=“00”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 258 CK + 65 ms CKSEL=“1010” SUT=“01”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 1K CK + 0 ms CKSEL=1010 SUT=“10”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 1K CK + 4.1 ms CKSEL=“1010” SUT=“11”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 1K CK + 65 ms CKSEL=“1011” SUT=“00”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 16K CK + 0 ms CKSEL=1011 SUT=“01”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 16K CK + 4.1ms CKSEL=“1011” SUT=“10”

低频石英/陶瓷振荡器(0.4-0.9MHZ) 16K CK + 65ms CKSEL=“1011” SUT=“11”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 258 CK + 4.1 ms CKSEL=“1100” SUT=“00”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 258 CK + 65 ms CKSEL=“1100” SUT=“01”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 1K CK + 0 ms CKSEL=1100 SUT=“10”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 1K CK + 4.1 ms CKSEL=“1100” SUT=“11”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 1K CK + 65 ms CKSEL=“1101” SUT=“00”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 16K CK + 0 ms CKSEL=“1101” SUT=“01”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 16K CK + 4.1ms CKSEL=“1101” SUT=“10”

中频石英/陶瓷振荡器(0.9-3.0MHZ) 16K CK + 65ms CKSEL=“1101” SUT=“11”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 258 CK + 4.1 ms CKSEL=“111”0 SUT=“00”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 258 CK + 65 ms CKSEL=“111”0 SUT=“01”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 1K CK + 0 ms CKSEL=“111”0 SUT=“10”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 1K CK + 4.1 ms CKSEL=“111”0 SUT=“11”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 1K CK + 65 ms CKSEL=“1111” SUT=“00”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 16K CK + 0 ms CKSEL=“1111” SUT=“01”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 16K CK + 4.1ms CKSEL=“111”1 SUT=“10”

高频石英/陶瓷振荡器(3.0-8.0MHZ) 16K CK + 65ms CKSEL=“1111” SUT=“11”

高位(BOOT区设置):


1、JTAGEN(JTAG允许):

1:JTAG禁止;

0:JTAG允许

OCDEN(OCD功能允许):

1:OCD功能禁止;

0:OCD功能允许

注:OCDEN(On-chip Debug):片上调试使能位

JTAGEN(JTAG使能): JTAG测试访问端口

使用方法:在JTAG调试时,使能OCDEN JTAGEN两位(复选框打勾),并保持所有的锁定位处于非锁定状态;在实际使用时为降低功耗,不使能OCDEN JTAGEN,大约减少2-3mA的电流。


2、SPIEN(SPI下载允许):

1:SPI下载禁止;

0:SPI下载使能

注:在ISP的软件里,SPIEN是不能编辑的,默认为0。


3、CKOPT(选择放大器模式):

CKOPT=0:高幅度振荡输出;

CKOPT=1:低幅度振荡输出

当CKOPT 被编程时振荡器在输出引脚产生满幅度的振荡。这种模式适合于噪声环境,以及需要通过XTAL2 驱动第二个时钟缓冲器的情况,而且这种模式的频率范围比较宽。当保持CKOPT 为未编程状态时,振荡器的输出信号幅度比较小。其优点是大大降低了功耗,但是频率范围比较窄,而且不能驱动其他时钟缓冲器。

对于谐振器,当CKOPT未编程时的最大频率为8 MHz,CKOPT编程时为16 MHz。内部RC振荡器工作时不对CKOPT编程。


4、EEAVE(烧录时EEPROM数据保留):

1:不保留;

0:保留


5、BOOTRST(复位入口选择):

1:程序从0x0000地址开始

0:复位后

从BOOT区执行(参考BOOTSZ0/1)


6、BOOTSZ 1/0(引导区程序大小及入口):

00: 1024Word/0xc00;

01: 512Word/0xe00;

10: 256Word/0xf00;

11: 128Word/0xf80

关键字:AVR单片机  熔丝  设置 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic492549.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:如何利用AVR单片机设计出语音识别系统
下一篇:AVR ISP面包板适配器的制作

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

AVR单片机IAR AVR C语言中断编程
一、AVRmega16中断向量表向量号 程序地址 中断源 描述 IAR AVR中的定义 1 000 RESET 外部引脚电平引发的复位,上电复位,掉电检测复位,看门狗复位,以及JTAG AVR 复位 RESET_vect 2 002 INT0 外部中断请求0 INT0_vect 3 004 INT1 外部中断请求1 INT1_vect 4 006 TIMER2 COMP 定时器/计数 2 比较匹配 TIMER2_COMP_vect 5 008 TIMER2 OVF 定时器/计数 2 溢出 TIMER2_OVF_vect 6 00A TIMER1 CAPT 定时器/计数 1事件捕捉 TIMER_ CAPT_vect 7 00C
发表于 2020-03-04
基于AVR单片机与CH375的多通道核辐射探测数据采集系统
该系统采用了AVR单片机、高速器件及USB接口技术,采集速度快,死时间短,计数率高,通信量大。USB所具有的即插即用、通用性强、易扩展、可靠性高等优点改善了各探测通道的使用性能。它不仅是4MeV静电加速器不可缺少的重要组成部分,而且为加速器防辐射安全提供确切依据,同时还为加速器在动植物育种、放射治疗、材料改性、放射化学等诸多方面的应用研究提供可靠的技术数据。整个系统已通过省级科技成果鉴定,实际运行良好。在更换探头和稍作参数调整后,还可将该系统用于其它大范围场地多种辐射的监测。0 引言文中介绍了多个探测通道组成的多道核数据采集系统,对4MeV静电加速器核辐射进行监测防护。各个通道采用AVR单片机ATmega128作为主
发表于 2020-03-02
基于AVR单片机与CH375的多通道核辐射探测数据采集系统
AVR单片机在LED遥控照明中的应用
摘要:基于AVR单片机设计了一种LED遥控照明系统,给出了红外接收模块和LED驱动模块的设计方法,以及软件程序流程。经测试,该方案可行,具有一定的应用价值。引言LED照明已经进入了家庭用户,与传统的照明设备(如白炽灯、荧光灯)相比,具有光源单色纯度高、色彩多样、效率高、光强度可调等优点。针对传统照明亮度不易调节、开关位置固定的问题,本文基于AVR单片机设计了一种LED遥控照明系统,提出了LED照明灯的驱动与亮度调节的方法。1 LED照明灯控制系统原理系统原理图如图1所示。当红外接收器接收到红外遥控信号时,通过外部中断将AVR单片机从休眠模式中唤醒;AVR单片机开始解析红外信号,如果与系统地址匹配,则将根据解析到的命令改变
发表于 2020-03-02
AVR单片机在LED遥控照明中的应用
基于AVR单片机和CMX865的串口转FSK通信模块
和捕捉功能的16位定时/计数器、具有独立片内振荡器的可编程看门狗定时器等。ATmega48/88/168芯片硬件电路可以完全兼容,完全可以根据软件实际需求灵活选择AVR芯片,极大地方便系统的开发与研制。三、硬件设计图1为串口转FSK通信模块电路。系统主要以AVR单片机ATmega48芯片和CMX865调制/解调芯片为硬件架构,ATmega48芯片利用C-BUS总线对CMX865芯片进行控制操作,实现FSK通信。CMX865芯片的IRQN终端与CPU芯片的外部中断0(INT0)相连,确保软件可以采用中断方式接收/发送FSK数据。CMX865芯片的时钟信号、片选信号、响应应答数据信号、接收控制数据信号分别与ATmega48芯片的普通I/O
发表于 2020-02-29
基于AVR单片机和CMX865的串口转FSK通信模块
AVR单片机中左移位和右移位指令
计算机的指令系统是一套控制计算机操作的代码,称之为机器语言。计算机只能识别和执行机器语言的指令。为了便于人们理解、记忆和使用,通常用汇编语言指令来描述计算机的指令系统。汇编语言指令可通过汇编器翻译成计算机能识别的机器语言。AVR单片机指令系统是RISC结构的精简指令集,是一种简明易掌握﹑效率高的指令系统。SL-DIY02-3开发实验器使用AT90S8535单片机,有118条指令, 而我们所做的11个实验程序仅用了34条指令, 我们重点讲这34条指令, 其余指令就可自学了。AVR器件(指令速查表) 118条指令器件AT90S2313/2323/2343/2333 ,AT90S4414/4433/4434/8515,AT90S8534
发表于 2020-02-29
AVR单片机中左移位和右移位指令
分析AVR单片机优缺点
简介:AVR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片机。AVR的单片机可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。AVR单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片机。AVR的单片机可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。avr单片机的特点及优点高可靠性、功能强、高速度、低功耗和低价位 , 一直是衡量单片机性能的重要指标,也是
发表于 2020-02-29
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved