STM32系统学习——USART(串口通信)

2020-07-03来源: eefocus关键字:STM32  USART  串口通信

串口通信是一种设备间非常常用的串行通行方式,其简单便捷,大部分电子设备都支持。


一、物理层

常用RS-232标准,主要规定了信号的用途、通信接口以及信号的电平标准。

这里写图片描述

“DB9接口”之间通过串口信号线建立起连接,串口信号线使用”RS-232标准“传输数据信号,这些信号通过记过电平转换芯片转换成控制器能识别的TLL标准的电平信号,才能实现通信。


1.电平标准

可分为TTL标准以及RS-232标准。

常见的电子电路中常见TTL的电平标准,理想状态使用5V表示二进制逻辑1,0V表示逻辑0;而为了增加串口通信的远距离传输以及抗干扰能力,RS-232使用-15V表示逻辑1,+15V表示逻辑0。

这里写图片描述

因为控制器一般使用TTL电平标准,所以常常使用MA3232芯片将TTL以及RS-232电平的信号进行互相转换。


2.RS-232信号线

最初RS-232串口标准常用于计算机、路由与调制调节器(“猫”)之间通信,设备被分为数据终端设备DTE(计算机、路由)和数据通信设备DCE(调制调节器)。旧台式计算机,一般都有RS-232标准的COM口,也称DB9接口。


DB9信号线说明

这里写图片描述

公头标准接法,只要使用直通型串口线连接起来即可。


二、协议层

协议层中,规定了数据包的内容,它由起始位、主体数据、校验位以及停止位组成,通信双方的数据包格式要约定一致才能正常收发数据 。


1、波特率

异步通信中由于没有时钟信号,所以2个通信设备需约定好波特率,常见的有4800、9600、115200等。

2、通信的起始和停止信号

串口通信的一个数据包从起始信号开始,知道停止信号结束。数据包的起始信号由一个逻辑0的数据位表示,而数据包的停止信号可由0.5、1、1.5或2个逻辑1的数据位表示,只要双方约定一致即可。

3、有效数据

在数据包的起始位之后紧接着的就是要传输的主体数据内容,也称为有效数据,有效

数据的长度常被约定为 5、6、7或 8位长

4、数据校验

在有效数据之后,有一个可选的数据校验位。由于数据通信相对容易受到外部干扰导致传输数据出现偏差,可以在传输过程加上校验位来解决这个问题。校验方法有奇校验(odd)、偶校验(even)、0校验(space)、1校验(mark)以及无校验(noparity)。


奇校验要求有效数据和校验位中“1”的个数为奇数,比如一个 8 位长的有效数据为:01101001,此时总共有 4 个“1”,为达到奇校验效果,校验位为“1”,最后传输的数据将是 8 位的有效数据加上 1 位的校验位总共 9 位。


偶校验与奇校验要求刚好相反,要求帧数据和校验位中“1”的个数为偶数,比如数据帧:11001010,此时数据帧“1”的个数为 4 个,所以偶校验位为“0”。


0 校验是不管有效数据中的内容是什么,校验位总为“0”,1 校验是校验位总为“1”。


三、STM32的USART简介

通用同步异步收发器是一个串行通信设备,可以灵活的与外部设备进行全双工数据交换。有别与USART,还有一个UART,它在USART基础上裁剪掉了同步通信功能,只有异步通信。简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是 UART。


串口通信一般是以帧格式传输数据,即一帧一帧传输,每帧包含有起始信号、数据信息、停止信息,可能还有校验信息。


USART 满足外部设备对工业标准 NRZ 异步串行数据格式的要求,并且使用了小数波特率发生器,可以提供多种波特率,使得它的应用更加广泛。USART 支持同步单向通信和半双工单线通信;还支持局域互连网络 LIN、智能卡(SmartCard)协议与 lrDA(红外线数据协会) SIR ENDEC规范。


USART支持使用 DMA,可实现高速数据通信。


四、USART功能框图剖析

这里写图片描述

下文结合图片看加深理解。

1、功能引脚

TX:发送数据输出引脚。

RX:接收。

SW_RX:数据接收引脚,属于内部引脚。


nRTS:请求以发送,n表示低电平有效。如果使能 RTS 流控制,当USART接收器准备好接收新数据时就会将nRTS变成低电平;当接收寄存器已满时,nRTS将被设置为高电平。该引脚只适用于硬件流控制。


nCTS:清除以发送(Clear To Send),n表示低电平有效。如果使能 CTS流控制,发送器在发送下一帧数据之前会检测 nCTS 引脚,如果为低电平,表示可以发送数据,如果为高电平则在发送完当前数据帧之后停止发送。该引脚只适用于硬件流控制。


SCLK:发送器时钟输出引脚。这个引脚仅适用于同步模式。


USART:下图是STM32F103VET6芯片的USART引脚

这里写图片描述

USART1的时钟来源于APB2总线时钟,最大频率为72MHZ,其他4个时钟来源于APB1总线时钟,最大频率36MHZ。UART只有异步传输功能,没有SCLK、nCTS和nRTS功能引脚。


2.数据寄存器

USART说数据寄存器(USART_DR)只有低 9 位有效,并且第 9 位数据是否有效要取决于USART 控制寄存器 1(USART_CR1)的 M 位设置,当 M 位为 0 时表示 8 位数据字长,当 M位为 1 表示 9 位数据字长,我们一般使用 8位数据字长。


USART_DR包含了已发送的数据或者接收到的数据。USART_DR实际是包含了两个寄存器,一个专门用于发送的可写 TDR,一个专门用于接收的可读 RDR。当进行发送操作时,往 USART_DR写入数据会自动存储在 TDR内;当进行读取操作时,向 USART_DR读取数据会自动提取 RDR 数据。


TDR和RDR都是介于系统总线和移位寄存器之间。串行通信是一个位一个位传输的,发送时把 TDR 内容转移到发送移位寄存器,然后把移位寄存器数据每一位发送出去,接时把接收到的每一位顺序保存在接收移位寄存器内然后才转移到 RDR。


USART 支持 DMA 传输,可以实现高速数据传输。


3.控制器

USART有专门控制发送的发送器、控制接收的接收器,还有唤醒单元、中断控制等。

使用USART之前需要向USART_CR1寄存器的UE位置1使能USART,UE位用于开启供给串口的时钟。发送或者接收数据字长可选8或9位,由USARTT_CR1的M位控制。


1)发送器

当USART_CR1寄存器的发送使能位TE置1时,启动数据发送,发送移位寄存器的数据会在TX引脚输出,低位在前,高位在后。如果是同步模式SCLK也输出时钟信号。


一个字符帧发送需要3部分:起始位、数据帧、停止位。起始位是一个位周期的低电平,位周期就是每一位占用的时间 ;数据帧就是我们要发送的8或9位数据,数据是最低位开始传输的;停止位是一定时间周期的高电平。


停止位的时间长短可以通过USART控制寄存器2(USART_CR2)的STOP[1:0]位控制,可选0.5个、1个、1.5个、2个停止位。默认使用1个停止位。2个停止位适用于正常USART模式、单线模式和调制解调器模式。0.5和1.5个停止位用于智能卡模式。


当发使能位TE置1之后,发送器开始会发送一个空闲帧(一个数据帧长度的高电平),接下来就可以往USART_DR寄存器写入要发送的数据。在写入最后一个数据后,需等待USART状态寄存器(USART_SR)的TC位为1,表示数据传输完成。USART_CR1寄存器的TCIE位置1,则产生中断。


发送数据时,几个重要的标志位如下:

TE:发送使能。

TXE:发送寄存器为空,发送单个字节时使用。

TC:发送完成,发送多个字节数据时候使用。

TXIE:发送完成中断使能。


2)接收器

将CR1寄存器的RE位置1,使能USART接收,使得接收器在RX线开始搜索起始位。在确定起始位后,就根据RX线电平状态把数据存放在接收移位寄存器内。接收完成后就把接收移位寄存器的数据移到PDR内,并把USART_SR寄存器的RXNE位置。如果USART_CR2寄存器的RXNEIE置1可以产生中断。


接收数据时,几个重要的标志位如下:

RE: 接收使能。

RXNE:读数据寄存器非空。

RXNEIE:发送完成中断使能。


4.小数波特率生成

USART 的发送器和接收器使用相同的波特率。计算公式如下:

这里写图片描述

其中,f PLCK 为 USART 时钟, USARTDIV 是一个存放在波特率寄存器(USART_BRR)的一个无符号定点数。其中 DIV_Mantissa[11:0]位定义 USARTDIV 的整数部分,DIV_Fraction[3:0]位定义 USARTDIV 的小数部分。


例如:DIV_Mantissa=24(0x18),DIV_Fraction=10(0x0A),此时 USART_BRR 值为0x18A;那么USARTDIV的小数位10/16=0.625;整数位24,最终USARTDIV的值为24.625。


如果知道 USARTDIV 值为 27.68,那么 DIV_Fraction=16*0.68=10.88,最接近的正整数为 11,所以 DIV_Fraction[3:0]为 0xB;DIV_Mantissa=整数(27.68)=27,即为 0x1B。


波特率的常用值有 2400、9600、19200、115200。下面以实例讲解如何设定寄存器值得到波特率的值。


我们知道 USART1 使用 APB2 总线时钟,最高可达 72MHz,其他 USART 的最高频率为 36MHz。我们选取 USART1 作为实例讲解,即 f PLCK =72MHz。为得到 115200bps 的波特率,此时:


115200 =72000000/(16 ∗ USARTDIV)


解 得 USARTDIV=39.0625 , 可 算 得 DIV_Fraction=0.0625*16=1=0x01 ,DIV_Mantissa=39=0x27,即应该设置 USART_BRR 的值为 0x171。


5.校验控制

STM32F103系列控制器USART支持奇偶校验。使用校验位时,串口传输的长度将在8位数据帧上加上1位的校验位,总共9位,此时USART_CR1寄存器的M位需要设置位1,即9数据位。将USART_CR1寄存器的PCE位置1就可以启动奇偶校验控制,奇偶校验由硬件自动完成。启动了奇偶校验控制之后,发送数据帧时会自动添加校验位,接收数据自动验证校验位。接收数据时如果出现奇偶校验位验证失败,会将USART_SR寄存器的PE置1,并可

[1] [2] [3]
关键字:STM32  USART  串口通信 编辑:什么鱼 引用地址:http://news.eeworld.com.cn/mcu/ic502058.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:stm32 keil中出现use of undeclared identifier' '的原因
下一篇:stm32——串口配置一般步骤

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

STM32F10X ADC原理详解(STM32F103ZET6)
STM32ADC的工作原理模/数转换器STM32F10x  ADC特点12位逐次逼近型的模拟数字转换器。最多带3个ADC控制器最多支持18个通道,可最多测量16个外部和2个内部信号源。支持单次和连续转换模式转换结束,注入转换结束,和发生模拟看门狗事件时产生中断。通道0到通道n的自动扫描模式自动校准采样间隔可以按通道编程规则通道和注入通道均有外部触发选项转换结果支持左对齐或右对齐方式存储在16位数据寄存器ADC转换时间:最大转换速率 1us。(最大转换速度为1MHz,在ADCCLK=14M,采样周期为1.5个ADC时钟下得到。)ADC供电要求:2.4V-3.6VADC输入范围:VREF- ≤  VIN 
发表于 2020-07-25
<font color='red'>STM32</font>F10X ADC原理详解(<font color='red'>STM32</font>F103ZET6)
STM32控制步进电机程序
、IN3:PC0、IN4:PC13、//步进电机初始化函数void Motor_Init(void){        GPIO_InitTypeDef GPIO_InitStructure;                RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);//开启时钟                GPIO_InitStructure.GPIO
发表于 2020-07-25
<font color='red'>STM32</font>控制步进电机程序
基于IAR环境下STM32F103单片机读取BME280程序
自己编写的基于IAR环境下STM32F103单片机读取BME280程序,没有太多的寄存器操作,简单易懂,可以直接调用,上电后只要对IO口初始化,调用函数Bme_ReadDigValue()读取校准寄存器参数并保存,再调用函数Bme_Init()初始化之后就可以用函数Bme_ReadStatus()读取传感器状态判断是否读取数据了,也可不判断传感器状态直接读取数据,读取数据直接调用函数ReadBme280()。单片机源程序:void ReadBme280(){        u32 value_ad;        double var1; 
发表于 2020-07-25
STM32步进伺服电机梯形加速源程序 单轴简易运动控制器
步进电机梯形加速程序单片机源程序如下:/*基于STM32的单轴简易运动控制器/脉冲发生器*//*脉冲+方向控制步进伺服电机*//*优化记录:增加急停GPIOC.0、正向极限GPIOC.1、负向极限GPIOC.2等输入IO接点中断修改TIMx_PSC一个寄存器的值,而不是修改TIMx_ARR预加载寄存器+TIMx_CCRx比较值寄存器两个值,缩短中断处理时间定位指令DRVI/DRVA中,目标频率设定过高、而实际输出脉冲数过少时,则不必加速到目标频率即进入减速区*//*DRVI(A);相对定位,输出A(A取绝对值)个脉冲A不能为0若A为正数,则方向为正、GPIOB.0为高电平若A为负数,则方向为负、GPIOB.0为低电平DRVA
发表于 2020-07-25
STM32实现ADS1256进行数据电压采集程序
通过cubeMX配置STM32RCT6的IO口与ads1256ADC模块的连接IO口工作模式SPI,还有接受中断接受状态引脚,最终ADC采集数据经过卡尔曼滤波器滤波输出单片机源程序如下:#include "ads1256.h"int32_t adcVaule = 0x00;float voltage = 0x00;float filterVoltage = 0.0;float filterVoltage2 = 0.0;void delayXus(uint16_t us) {    uint16_t diff = 0xffff - 5 - us;    //设置定时器的计数
发表于 2020-07-25
基于WiFi的网络授时时钟(带实时天气更新)STM32程序设计
本方案采用的是MCU+AT指令的形式开发,MCU是大家比较熟悉的意法半导体公司STM32F103C8T6,WiFi模块使用的是安信可ESP-12F,本方案是一个Demo设计,比较简单,仅实现了功能,算是一个抛砖引玉吧!先上视频演示:https://v.youku.com/v_show/id_XN ... m=a2hzp.8244740.0.0WiFi模块资料链接:wiki点ai-thinker点com/esp8266STM32F103C8芯片资料链接:https://www.stmicroelectronics.c ... 103c8.html#overview硬件部分,由时钟电路+WiFi模块+MCU最小系统+OLED
发表于 2020-07-25
基于WiFi的网络授时时钟(带实时天气更新)<font color='red'>STM32</font>程序设计
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved