STM32的DMA多通道多数据AD转换

最新更新时间:2022-02-13来源: eefocus关键字:STM32  DMA  多通道  多数据  AD转换 手机看文章 扫描二维码
随时随地手机看文章

描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求平均值。最后通过串口传输出最后转换的结果。


程序如下:

#i nclude "stm32f10x.h" //这个头文件包括STM32F10x所有外围寄存器、位、内存映射的定义

#i nclude "eval.h" //头文件(包括串口、按键、LED的函数声明)

#i nclude "SysTickDelay.h"

#i nclude "UART_INTERFACE.h"

#i nclude


#define N 50 //每通道采50次

#define M 12 //为12个通道


vu16 AD_Value[N][M]; //用来存放ADC转换结果,也是DMA的目标地址

vu16 After_filter[M]; //用来存放求平均值之后的结果

int i;




void GPIO_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;


GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //因为USART1管脚是以复用的形式接到GPIO口上的,所以使用复用推挽式输出

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructure);



GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_Init(GPIOA, &GPIO_InitStructure);




//PA0/1/2 作为模拟通道输入引脚

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0| GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚

GPIO_Init(GPIOA, &GPIO_InitStructure);


//PB0/1 作为模拟通道输入引脚

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚

GPIO_Init(GPIOB, &GPIO_InitStructure);


//PC0/1/2/3/4/5 作为模拟通道输入引脚

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚

GPIO_Init(GPIOC, &GPIO_InitStructure);

}


}



void RCC_Configuration(void)

{

ErrorStatus HSEStartUpStatus;


RCC_DeInit(); //RCC 系统复位

RCC_HSEConfig(RCC_HSE_ON); //开启HSE

HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待HSE准备好

if(HSEStartUpStatus == SUCCESS)

{

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer

FLASH_SetLatency(FLASH_Latency_2); //Set 2 Latency cycles

RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB clock = SYSCLK

RCC_PCLK2Config(RCC_HCLK_Div1); //APB2 clock = HCLK

RCC_PCLK1Config(RCC_HCLK_Div2); //APB1 clock = HCLK/2

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_6); //PLLCLK = 12MHz * 6 = 72 MHz

RCC_PLLCmd(ENABLE); //Enable PLL

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLL is ready

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock source

while(RCC_GetSYSCLKSource() != 0x08); //Wait till PLL is used as system clock source


RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB

| RCC_APB2Periph_GPIOC |RCC_APB2Periph_ADC1 | RCC_APB2Periph_AFIO |RCC_APB2Periph_USART1, ENABLE ); //使能ADC1通道时钟,各个管脚时钟


RCC_ADCCLKConfig(RCC_PCLK2_Div6); //72M/6=12,ADC最大时间不能超过14M

RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输


}

}



void ADC1_Configuration(void)

{

ADC_InitTypeDef ADC_InitStructure;


ADC_DeInit(ADC1); //将外设 ADC1 的全部寄存器重设为缺省值



ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式

ADC_InitStructure.ADC_ScanConvMode =ENABLE; //模数转换工作在扫描模式

ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //模数转换工作在连续转换模式

ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发转换关闭

ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐

ADC_InitStructure.ADC_NbrOfChannel = M; //顺序进行规则转换的ADC通道的数目

ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器



//设置指定ADC的规则组通道,设置它们的转化顺序和采样时间

//ADC1,ADC通道x,规则采样顺序值为y,采样时间为239.5周期

ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 5, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 6, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 7, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_11, 8, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 9, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 10, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 11, ADC_SampleTime_239Cycles5 );

ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 12, ADC_SampleTime_239Cycles5 );


// 开启ADC的DMA支持(要实现DMA功能,还需独立配置DMA通道等参数)

ADC_DMACmd(ADC1, ENABLE);



ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1


ADC_ResetCalibration(ADC1); //复位指定的ADC1的校准寄存器


while(ADC_GetResetCalibrationStatu

s(ADC1)); //获取ADC1复位校准寄存器的状态,设置状态则等待



ADC_StartCalibration(ADC1); //开始指定ADC1的校准状态


while(ADC_GetCalibrationStatus(ADC1)); //获取指定ADC1的校准程序,设置状态则等待



}



void DMA_Configuration(void)

{


DMA_InitTypeDef DMA_InitStructure;

DMA_DeInit(DMA1_Channel1); //将DMA的通道1寄存器重设为缺省值

DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&ADC1->DR; //DMA外设ADC基地址

DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value; //DMA内存基地址

DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //内存作为数据传输的目的地

DMA_InitStructure.DMA_BufferSize = N*M; //DMA通道的DMA缓存的大小

DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不变

DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址寄存器递增

DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //数据宽度为16位

DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //数据宽度为16位

DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //工作在循环缓存模式

DMA_InitStructure.DMA_Priority = DMA_Priority_High; //DMA通道 x拥有高优先级

DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道x没有设置为内存到内存传输

DMA_Init(DMA1_Channel1, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道


}


//配置所有外设

void Init_All_Periph(void)

{


RCC_Configuration();


GPIO_Configuration();


ADC1_Configuration();


DMA_Configuration();


//USART1_Configuration();

USART_Configuration(9600);


}


u16 GetVolt(u16 advalue)


{


return (u16)(advalue * 330 / 4096); //求的结果扩大了100倍,方便下面求出小数


}


void filter(void)

{

int sum = 0;

u8 count;

for(i=0;i<12;i++)


{


for ( count=0;count


{


sum += AD_Value[count][i];


}


After_filter[i]=sum/N;


sum=0;

}


}


int main(void)

{


u16 value[M];


init_All_Periph();

SysTick_Initaize();



ADC_SoftwareStartConvCmd(ADC1, ENABLE);

DMA_Cmd(DMA1_Channel1, ENABLE); //启动DMA通道

while(1)

{

while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//等待传输完成否则第一位数据容易丢失


filter();

for(i=0;i<12;i++)

{

value[i]= GetVolt(After_filter[i]);


printf("value[%d]:t%d.%dvn",i,value[i]/100,value[i]0) ;

delay_ms(100);

}

}


}


总结

该程序中的两个宏定义,M和N,分别代表有多少个通道,每个通道转换多少次,可以修改其值。


曾出现的问题:配置时钟时要知道外部晶振是多少,以便准确配置时钟。将转换值由二进制转换为十进制时,要先扩大100倍,方便显示小数。最后串口输出时在 printf语句之前加这句代码,防止输出的第一位数据丢失:while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);

关键字:STM32  DMA  多通道  多数据  AD转换 编辑:什么鱼 引用地址:STM32的DMA多通道多数据AD转换

上一篇:STM32F107定时器4用作外部计数器
下一篇:我的STM32学习之路(1)---STM32概述(Cortex-M3)

推荐阅读

STM32入门系列-开发工具keil5安装
主要介绍如下三部分内容:keil5软件获取keil5安装安装STM32芯片包软件获取可以通过搜索引擎搜索关键字“KEIL5下载”,找到其官方网站http://www.keil.com。我们这里使用MDK5.14版本,如果后面出了更高的版本选择性升级即可,不过也没有必要什么都追求最新的,这一个软件用着习惯就行。登录armkeil官方网站,网站首页有软件下载连接,在这里我们选择MDK-Arm。会让你先注册,注册完成之后就可以开始下载了。软件安装安装此软件时一定要注意以下几点:安装路径不能带中文,必须是英文路径。安装目录不能跟51的KEIL或者KEIL4冲突,三者目录必须分开。KEIL5的安装比起KEIL4多了一个步骤,必须添加芯片包,不
发表于 2022-11-18
<font color='red'>STM32</font>入门系列-开发工具keil5安装
STM32入门系列-存储器与寄存器介绍
介绍两部分内容:什么是存储器映射什么是寄存器及寄存器映射为了让大家对存储器与寄存器有一个更清楚的认识,并且为之后使用 C 语言来访问 STM32 寄存器内容打下基础。等明白了如何使用 C 语言封装底层寄存器,也就为后面学习库函数的开发做好了铺垫。什么是存储器映射程序存储器、数据存储器、寄存器和I/O端口排列在同一顺序的4GB地址空间内。这就是我们曾提到过的被控总线的连接部分,而编程时就是操作这一块地方。存储器本身不具有地址信息,它的地址是由芯片厂商或用户分配,给存储器分配地址的过程称为存储器映射,如果再分配一个地址就叫重映射。 STM32F103ZET6 数据手册中存储器映射图如下所示。从上图中可以看到 ARM 把这 4GB 的存储
发表于 2022-11-18
STM32入门系列-GPIO概念介绍
GPIO(general purpose intput output)是通用输入输出端口的简称,可以通过软件来控制其输入和输出。STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。不过 GPIO 最简单的应用还属点亮 LED 灯了,只需通过软件控制 GPIO 输出高低电平即可。当然 GPIO 还可以作为输入控制,比如在引脚上接入一个按键,通过电平的高低判断按键是否按下。其中STM32F103xC、STM32F103xD和STM32F103xE有144个引脚的芯片如下图所示。那么是不是所有引脚都是 GPIO 呢?当然不是,STM32 引脚可以分为这么几大类:电源引脚:引脚图中的 VDD、V
发表于 2022-11-18
STM32入门系列-GPIO结构
已经了解了STM32 GPIO的基本概念及引脚分类。现在来看下STM32 GPIO内部的结构是怎样的。IO端口位的基本结构如下图所示。从图中可以看出GPIO内部结构还是比较复杂的,只要将这张GPIO结构图理解好,那么关于GPIO的各种应用模式将非常清楚。图中最右端I/O端口就是STM32芯片的引脚,其它部分都在STM32芯片内部。上图中我们将每部分都用红色数字标号了,按照顺序我们逐一讲解。保护二极管引脚内部加上这两个保护二级管可以防止引脚外部过高或过低的电压输入,当引脚电压高于VDD_FT或VDD时,上方的二极管导通吸收这个高电压,当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。尽管STM32芯片内部有
发表于 2022-11-18
<font color='red'>STM32</font>入门系列-GPIO结构
STM32入门系列-创建寄存器模板
介绍如何使用 KEIL5 软件创建寄存器模板, 方便之后使用寄存器方式来操作STM32开发板上的LED,让大家创建属于自己的寄存器工程模板。获取工程模板的基础文件首先我们在电脑任意位置创建一个文件夹,命名为“寄存器模板创建”,然后在其下面新建 2 个文件夹,如下:Obj 文件夹: 用于存放编译产生的 c/汇编/链接的列表清单、 调试信息、hex文件、预览信息、封装库等文件。User 文件夹: 用于存放用户编写的 main.c、 STM32F1 启动文件、stm32f10x.h头文件。我们需要将寄存器工程模板所需的基础文件 main.c、STM32F1 启动文件及stm32f10x.h 头文件放入到 User 文件夹内。在工程实例的U
发表于 2022-11-18
<font color='red'>STM32</font>入门系列-创建寄存器模板
STM32入门系列-使用C语言封装寄存器
前面介绍了存储器映射、寄存器和寄存器映射,这些都是为了介绍使用 C语言封装寄存器做铺垫。这里我们通过一个实例来对 C 语言封装寄存器进行介绍。具体实例:控制 GPIOC 端口的第 0 管脚输出一个低电平。首先我们需要知道GPIOC 端口外设是挂接在哪个总线上的,然后根据总线基地址和本身的偏移地址得到 GPIOC 外设基地址,最后通过这个外设基地址得到里面各种寄存器基地址。总线和外设基地址封装根据寄存器的概念,我们可以使用 C 语言中的宏定义对寄存器进行定义。具体代码如下://定义外设基地址#define PERIPH_BASE ((unsigned int)0x40000000) 1)//定义 APB2 总线基地址#define A
发表于 2022-11-18

推荐帖子

电源设计中PCB不可忽略的5点
电源设计中PCB设计不可忽略的5点 电源设计中仅仅就PCB设计环节来说:              1.首先是要有合理的走向:        如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...。    它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防
sppcb1 电源技术
有关根据规范书测试条件进行MOS管的自测试技巧!欢迎大家补充!
作为一个模拟电路设计者来说,有时对MOS管在选用和比对的过程中经常会遇到测试的问题。有时看着MOS管规范书上的术语和测试条件,有时感觉无从下手。 现在就MOS管自测试的2个项目,供大家参考!抛砖引玉,欢迎网友们进行补充。 [本帖最后由qwqwqw2088于2012-9-523:48编辑]有关根据规范书测试条件进行MOS管的自测试技巧!欢迎大家补充!
qwqwqw2088 模拟与混合信号
跪求:89c2051单片机c语言程序
程序功能如下:程序设定:T0为定时器,基本的定时时基为50ms。T1为计数器,运用内部中断0可保证T0定时满500ms后就读取此时计数器的值,以计算气压值。如使T1、T0均工作于方式1,并在P1口送字型码,同时可用P3.0~P3.3做位选线具体见附件……请各位多多回复谢谢[]跪求:89c2051单片机c语言程序
zh7031907 51单片机
单节锂电池电量计和低截止电流充电IC
单节锂电池电量计和低截止电流充电IC 哪个有单节的锂电池电量计推荐?1620可充电锂电池,电池容量20mAh3.7V。单纯的电量计就好!不需要有MCU的功能;但是要能和MCU通讯,比如有IIC通讯接口。要有状态输出给到MCU做判断,比如正在充电,充电截止,空载没有接电池;封装不能比SO8大一个手环的产品,一开始的旧产品用的是TP4054充电IC,完全不适合这个小容量电池,用了两个2M的电阻分压给到MCUADC做判断是否充满,这是很傻瓜式的判断;我接手这个项目,我想改善,想准确的给到M
QWE4562009 电源技术
opa354问题?
问题:图中红色标记的L线断开和连接对整个运放输出信号的影响?连好还是不连好? opa354问题?
冰魄3009 模拟电子
测评汇总:Telink新一代低功耗高性能多协议无线套件B91,免费测评试用
活动详情:【Telink新一代低功耗高性能多协议无线套件B91,免费测评试用】更新至2022-10-30测评报告汇总:@damiaa【Telink新一代低功耗高性能多协议无线套件B91评测】nodered+HomeAssistant按键秀【Telink新一代低功耗高性能多协议无线套件B91评测】zigbee程序生成和编译配置【Telink新一代低功耗高性能多协议无线套件B91评测】HomeAssistant+B91zigbee入网【Telink新一代低功耗高性能多协议无线套件B91评
EEWORLD社区 测评中心专版
小广播
设计资源 培训 开发板 精华推荐

何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2022 EEWORLD.com.cn, Inc. All rights reserved