纳米激光器的技术简介

2011-06-13来源: 互联网关键字:纳米  技术  简介
1960年人类制作出了第一台激光器。 40多年过去了,激光器无论在其种类上或其性能上都呈现出缤纷异彩的发展。自第一台红宝石激光器的问世,继之气体激光器、各类固体激光器、半导体激光器、液体激光器、准分子激光器、X射线激光器、自由电子激光器、量子阱激光器、量子点激光器、孤子激光器等也先后被研制出来。激光科学与技术的突飞猛进发展,导致许多现代科学技术对激光的重要应用,同时也带动了多种新学科的发展并促进了诸多边缘学科的形成。

      然而随着人类社会科技的进步,激光器本身的发展从未停息脚步。《Science》发表了美国California大学 Berkeley分校M. Huang 和 P. Yang等人的“室温紫外辐射的纳米激光器”声称是世界上最小的激光器。当时他们先是在蓝宝石基底上镀上1~3.5微米厚度的金,然后把它们放到铝的蒸发皿中,在氩气中将材料和基底加热到880~905摄氏度以产生Zn蒸气,产生的Zn蒸气传送到基底上,大约经过2~10分钟左右,截面为六角形的纳米线便可以生长到2~10微米。直径为20~150 nm的纳米线自然形成了一个激光腔。

在室温下截面为六角形的纳米线样品用Nd:YAG激光器的四次谐波的激光泵浦(波长为266nm,脉宽为3ns),泵浦的激光光束以10度角入射聚焦在纳米线的对称轴上。这样一来,受激辐射发射的光便沿着ZnO纳米线中心袖的方向在纳米线的末端表平面上会聚。在发射光谱的变化过程中,随着功率的增加可以观察到激光产生的过程.当激励的能量超过ZnO纳米线的阈值时(其阈值约为40kW/cm2),经测量,发射光谱出现了线宽为0.3微米的尖峰,这比低于阈值时的自发辐射产生的约15微米的峰值线宽要小得多。正是这些窄线宽和发射能量的快速增长便可断定纳米线发生了受激辐射.大家知道产生激光的三个要素是工作物质、泵浦源和谐振腔。在构建的纳米激光器中,前两者已具备,那么谐振腔则无需如一般激光器那样装配上半反和全反的反射镜,因为这一纳米线便是天然的激光器的谐振腔。

纳米线的一端是蓝宝石和ZnO纳米线之间的外延分界面,另一端是ZnO纳米线的端面。这就自然地形成了纳米激光器的激光谐振腔,因为蓝宝石以及 ZnO和空气的折射率分别是1.8, 2.45 和1。用Nd:YAG激光器的四次谐波的激光泵浦在ZnO纳米线上便获得了脉宽为0.3 nm,波长为385nm的激光。

      这种氧化锌(ZnO)纳米激光器——世界上最小的激光器从那时起便问世了,这也是纳米技术诞生以来的第一项实际的应用。当然,这种纳米激光器还属是一个最初阶段,然而在工艺的简易程度,亮度以及尺寸方面,ZnO纳米激光器均可以和当时的GaN蓝色半导体激光器相媲美的。

      如果不用Nd:YAG激光器的四次谐波的激光做泵浦源,而改用电流来激活纳米线,这样的纳米激光器岂不是更为理想吗?据《Nature》杂志报道,美国哈佛大学以Charles Lieber为首的科学家们成功地研制出不需外来激光泵浦的一种新型电驱动的纳米激光器,其是用外电流激励泵浦的。这种外电流激励泵浦的新型激光器实际上是以半导体硫化镉为原料制成的纳米线。将硫化镉纳米线安装在涂有硅材料的基底上,制成一个回路。接通电源后,便可观察到,在一定电压下,电流通过硅材料流向硫化镉纳米线,纳米线的另一端随即发出蓝绿色的光。随着电流强度增大,光的颜色变得单一,波长也相当短。在这种情况下硫化镉纳米线所发出的光便是激光。在随后的实验中,他们使用了不同的半导体材料,由此制成的激光器发出的激光颜色也各不相同,氮化镓纳米线发出蓝色到紫外的光,磷化铟纳米线发出红外光。Charles Lieber等人的研究小组用涂覆在硅基片上硫化镉纳米线而研制成功的纳米激光器,其中电接触是通过涂覆硫化镉纳米线表面的金属导体层来实现的,在加上一定电压时会有电流通过这种结构,而硫化镉纳米线末端开始发出波长约为490微米的蓝绿色激光。当电流达到一定值,发出的激光会变成几乎是单色光,单色光是感应式激光的可靠特征。其他的半导体材料,例如氮化镓和磷化铟,能产生更宽波段的激光,实际上这样构成的纳米激光器所发出的激光可覆盖从紫外线到红外线整个波段。

      纳米激光器的微小尺寸可以使光子被限制在少数几个状态上,而低音廊效应则使光子受到约束,直到所产生的光波累积起足够多的能量后透过此结构。其结果是激光器达到极高的工作效率,而能量阈则很低。

      纳米激光器实际上是一根弯曲成极薄的面包圈的形状的光子导线,实验发现,纳米激光器的大小和形状能够有效控制它发射出的光子的量子行为,从而影响激光器的工作。

      研究还发现,纳米激光器工作时只需约100微安的电流。最近纳米激光器的研究人员把这种光子导线缩小到只有五分之一立方微米体积内。在这一尺度上,此结构的光子状态数少于10个,接近了无能量运行所要求的条件,但是光子的数目还没有减少到这样的极限上。最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子除了能提高效率以外,无能量阈纳米激光器的运行还可以得出速度极快的激光器。由于只需要极少的能量就可以发射激光,这类装置可以实现瞬时开关。已经有一些激光器能够以快于每秒钟200亿次的速度开关,适合用于光纤通信。由于纳米技术的迅速发展,这种无能量阈纳米激光器的实现将指日可待。

      纳米线的化学弹性和其一维性使它们成为理想的超小型的激光光源,这种超小型的纳米激光器在一系列领域中有着非常广阔的应用前景。在化学和生物医学工程中例如生物传感器、显微术和激光外科以及也有可能把纳米激光器用于鉴别化学物质。同时纳米激光器在光计算,信息存储和纳米分析等领域也会得到广泛的应用。纳米激光器可以用于电路,可以自动地调控开关。若把激光器集成安装到芯片上便可提高计算机磁盘信息存储量以及未来的光子计算机的信息存储量,加速信息技术的集成化发展。

 

关键字:纳米  技术  简介 编辑:神话 引用地址:http://news.eeworld.com.cn/mndz/2011/0613/article_10009.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:显示器接口针脚定义及接法
下一篇:光纤激光器的原理及特性

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

澳大利亚提出钻石纳米线束设计,将为储能形式带来新革命!
导读:昆士兰科技大学的研究人员提出了一种钻石纳米线束的新设计,这可能为一种新的机械储能形式铺平道路。按计算,这项技术的能量是锂离子电池的三倍。昆士兰科技大学(QUT)材料科学中心的科学家们在《自然通讯》上发表了一篇新的研究论文,提出使用金刚石纳米线束(DNT)来提供能量储能能力,这可能会给机械和生物医学工程带来一场革命。DNT是一种碳纳米结构——一组超薄的一维碳线,当它们被扭曲或拉伸时可以储能能量。昆士兰科技大学的研究员詹海飞博士领导了这个研究小组,他把纳米结构比作一个压缩的线圈或儿童的发条玩具。他说,“当扭曲的线圈解开时,能量可以被释放出来。”据微锂电小组分析,其诀窍在于控制产生的能量。如果这种能量可以被稳定下来,那么它就
发表于 2020-05-07
澳大利亚提出钻石纳米线束设计,将为储能形式带来新革命!
5纳米刻蚀设备,国产半导体设备厂商有了话语权
批量生产,用于台积电的5nm生产线中。 据官网介绍,中微半导体是一家以中国为基地、面向全球的微观加工高端设备公司,为集成电路和泛半导体行业提供极具竞争力的高端设备和高质量的服务。中微开发的等离子体刻蚀设备和化学薄膜设备是制造各种微观器件的关键设备,可加工微米级和纳米级的各种器件。 根据该公司年报,中微公司开发的高端刻蚀设备已运用在国际知名客户65纳米到7纳米的芯片生产线上。同时,公司根据先进集成电路厂商的需求,已开发出5纳米刻蚀设备用于若干关键步骤的加工,并已获得行业领先客户的批量订单。虽然中微没有明说,但业界猜测这家客户就是台积电,因为只有台积电量产了5nm工艺。 据了解,中微半导体目前正在配合客户需求
发表于 2020-04-21
5纳米刻蚀设备,国产半导体设备厂商有了话语权
我国学者合成有机纳米聚合物,或影响柔性电子器件等
近日,中国科学院院士黄维和南京邮电大学信息材料与纳米技术研究院解令海教授团队,借鉴中国方圆文化和古代窗格结构,突破了高分子的新概念并合成了有机纳米聚合物,实现了基于中心对称分子排列的立体选择格子化和聚格子化。图片来源:科技日报近年来,黄维院士和解令海教授带领的团队针对于高分子的局限性这一问题,提出了有机纳米聚合物的概念,并开创了聚格类有机纳米聚合物这一新的研究方向。他们借用了1948年荷兰版画大师摩里茨·科奈里斯·埃舍尔创作的《手画手》命名了这一类纳米聚合物,即手画手聚格,表现出了有机纳米聚合物关键特征。据科技日报报道,解令海表示,在该研究中,我们设计的A2B2型合成子不仅克服了交联问题,而且有效控制了纳米聚合物的立构规整度
发表于 2020-04-14
我国学者合成有机纳米聚合物,或影响柔性电子器件等
入选封面论文的高性能电池纳米复合材料,有多强?
/NGA。核壳结构的SnO2@Sn保证了Na2O可以通过多种方式改善负极的电化学性能,特别是防止颗粒团聚,稳定电极结构,改善Na+扩散途径,保证Sn?SnO2的可逆转化。因此,该负极具有优异的电化学性能,较高的比容量,卓越的倍率性能和稳定的循环性能。同时,随着NGA石墨化程度的提高进一步促进倍率性能。此外,这种独特的纳米复合材料设计可以推广到其他合金型负极材料并应用于钠离子电池和锂离子电池中。
发表于 2020-04-13
入选封面论文的高性能电池纳米复合材料,有多强?
碳纳米管为硅阳极应用铺平道路 开辟锂离子电池材料新领域
据外媒报道,美国科学家已经开发出一种碳纳米管来制造带有硅阳极的锂离子电池。该设备在1500次循环后的容量保持率优于87%。研究人员说,他们的发现克服了将硅用作阳极的许多障碍,开拓了锂离子电池中电极材料的使用。二级离子质谱仪使PNNL的科学家能够在分子水平上观察锂离子电池外媒介绍,美国太平洋西北国家实验室(PNNL)的科学家使用碳纳米管来克服开发锂离子电池硅阳极所固有的一些问题。实验得出,如果用硅阳极替代当今广泛应用于商业电池中的石墨阳极,则有可能显着提高电池的能量密度。然而,硅也存在问题,当它与锂形成合金时,它会大幅度膨胀,有时膨胀高达400%,其膨胀会导致一系列性能的下降。尽管今年美国莱斯大学的科学家证明了使用多孔硅的方法能够
发表于 2020-04-09
碳纳米管为硅阳极应用铺平道路 开辟锂离子电池材料新领域
集先进技术于一身,7纳米FinFET工艺,Prodigy芯片终亮相
AMD首席技术官,帮助创建64位Athlon和Opteron体系结构的Fred Weber是顾问,计算机教授Steve Furber也是如此。曼彻斯特大学的自然科学专业,并在1980年代设计了第一个32位的Acorn RISC Machines处理器,我们称之为Arm。Christos Kozyrakis,经常与Google关联的分布式系统专家,斯坦福大学的教授,也担任该公司的顾问。 芯片解读 据Danilak称,Prodigy芯片已经设计了好几年了,已经可以在FPGA模拟器中使用一段时间了,而且现在已经被淘汰。就像当今许多先进芯片一样,它是使用台湾半导体制造公司的7纳米工艺进行制造的。而先进
发表于 2020-04-03
集先进技术于一身,7纳米FinFET工艺,Prodigy芯片终亮相
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved