datasheet

如何设计一款低成本HART发送器

2013-12-19来源: 互联网关键字:HART  发送器

利用可寻址远程传感器数据通路 (HART) 协议,过程测量与控制器件可通过传统4-20mA电流环路实现通信。这种协议使用1200 Hz和2200 Hz频率的移频键控 (FSK)。此处,一个 1200Hz 周期代表一个逻辑 1,而两个 2200Hz 周期代表逻辑 0。由于 FSK 波形的平均值始终为 0,因此模拟 4-20mA 信号不受影响。

  理想情况下,FSK 信号由叠加在 DC 测量信号上的两个频率正弦波组成。但是,相连续 FSK 正弦波的生成是一种十分复杂的过程。因此,为了简化 HART 信号波形的生成过程,HART 规范的物理层对参数极限值进行了定义,标准化波形的振幅、形态和转换速率均不得超出这些参数极限值。在这种情况下,一种梯形波形非常适合于这种应用,图 1 显示了其各个极限值。

  图 1 梯形HART电流波形的最小与最大值

  图 2 所示 HART 发送器提供了一种简单且低成本的解决方案,其产生一个梯形 HART 波形,并将它叠加在一个可变 DC 电平上,最终把产生的输出电压转换为电流环路。

  图 2 低成本 HART 发送器

  HART FSK 信号(常常由本地微控制器单元 [MCU] 生成),被应用于首个NAND 栅极 (G1) 的输入端。MCU 的通用 I/O 端口的第二个输出,起到一个有效高态“激活”(ENABLE)信号的作用。G1 控制两个远端 NAND 栅极(G2和G3),其输出通过高阻抗分压器 R1 和 R2 连接到一起。

  由 R4 和 R5 组成的第二个分压器,将 5V 电源分为一个 VREF = VCC/2 的基准电压,即 2.5V。只要“激活”为低电平,G2 的输出便为低态,而 G3 输出为高态。由于高阻抗负载,NAND 输出拥有轨到轨功能;R1=R2 时,A1 非反向输入 VIN 的输入电压也为 2.5V。

  当“激活”为高态时,G2 和 G3 输出相互换相,从而在 VIN 下形成一个小方波,其围绕 VREF 对称摆动。VIN 的峰值到峰值振幅为:

  VS 为正 5V 电源,而 R1|| R2 为 R1 和 R2 的并联组合。

  把图 2 的电阻值插入方程式得到 VIN(PP)=200Mv 的输入电压摆动,其让VIN摆动位于2.4V和2.6V之间。当 VIN 升至 2.6V 时,A1 的输出立即达到正饱和状态,并通过 R6 和 R7 对 C3 充电。C3 (VHART) 的实际 HART 电压线性上升,直到达到 2.6V 为止。这时,放大器 A1 迅速退出饱和状态,并起到一个电压跟随器的作用,从而将 VHART 保持在 2.6V。当 VIN 下降至 2.4V 时,A1输出进入负饱和状态,并通过 R6 和 R7 对 C3 放电。之后,VHART 线性下降,直到其达到 2.4V 为止。这时,A1 退出饱和状态,并再次起到一个电压跟随器的作用,将 VHART 保持在 2.4V。

  由此产生的梯形波形在振幅方面与 VIN 相等,并且围绕 VREF 做对称摆动。它的转换速率计算方法如下:

  其中,VSAT 为 A1 的正或负输出饱和电压。

  由于 VHART 的 AC 电流比VSAT 小,因此 VHART 可以由其静态电平 VREF 得到近似值。另外,A1 轨到轨输出能力结合 R6 负载高阻抗,可得到 5V 和 0V 的输出饱和电平。假设 R7 远小于 R6,则前面表达式可简化为:

  如果我们把图 2 的 R6 和 C3 组件值插入方程式,则梯形波形的转换速率结果为 ±1.25 V/ms。

把 VHART (200Mv) 的峰值到峰值振幅调节为 1mA HART 峰值到峰值电流信号,让 1.25V/ms 电压转换速率相当于 HART 电流信号中 6.25 mA/ms 的电流转换速率,从而完全位于图 1 所示极限值范围以内。

  要求使用 R7 来将 A1 输出隔离于大电容负载 C3,目的是维持闭环稳定性。具体要求值取决于 A1 的单位增益带宽 fT 以及 R6 和 C3 的值。R7 的有效近似值计算方法如下:

  A1 必须具有相当宽的频率响应,并且其转换速率要明显快于HART梯形波形。OPA2374 是 TI 一种低成本的双运算放大器,其拥有 5 V/µs 的高转换速率和fT = 6.5 MHz 的单位增益带宽。另外,放大器输出具有轨到轨驱动能力,其典型静态电流为每个放大器 585 µA。

  第二个放大器 A2 把 HART 信号叠加于可变 DC 电压 VDC 上。A2 输出电压VOUT 变为:

  使 R8 到 R11 值相等,可将上面方程式简化为:

  由于 VHART 由一个 200Mv 梯形波形(围绕 VREF 对称摆动)组成,因此 A2输出仅包含叠加在可变 DC 电平上的小HART波形。将VOUT送入TI的XTR115电压到电流转换器,可使每个 200mV VDC 相当于 1Ma 电流。因此,把 VDC从 0.8V 变为 4.0V,相当于一个 4-20Ma 电流范围。

  电阻器 R8 到 R11 值应足够大,以最小化对 C3 充电电流的负载影响,但是又不能太大,以免 A2 输入偏差电流引起误差。适当的电阻值可将 VREF 从 VOUT 完全消除,这样 VOUT = VDC ± 100 mV。因此,R4 和 R5 取值不当,或者电压电源存在差异,都不会对 VOUT 的 DC 电流产生太大影响。

  XTR115 是一种双线、精密、电流输出转换器,其通过一个工业标准电流环路发送模拟 4-20mA 信号。这种器件拥有精确的电流调节和输出电流限制功能。它的片上5V电压调节器用于为外部电路供电。为了确保对输出电流IOUT的控制,电流返回引脚IRET起到一个本地接地的作用,并对外部电路中使用的所有电流进行检测。它的输入级拥有 100 的电流增益,其由两个激光修整增益电阻器 RG1 和 RG2 设置:

  因此,输入电流 IIN 产生输出电流 IOUT,其等于 IIN × 100。IIN 的电势为 0(参考 IRET)时,把输入电压转换为规定输出电流所要求的电阻器值为:

  因此,将200mVPP HART电压转换为1mA电流,要求输入电阻为:

  另外,RIN对4-20mA电流范围的输入电压范围定义如下:

  以及:

  图 3 HART 发送器信号通路的信号电压

  结论

  简单运算放大器电路可用于为传统 4-20mA 电流环路设计一个低成本的 HART 发送器。

  图 3 显示了 2V DC 输入时 HART 传输期间不同测试点的信号电压。匹配差分放大器 A2 的电阻器,移除了输出信号的 VREF 分量。因此,基准电压偏差对VOUT 没有影响。这样,输出信号便围绕 2V DC 输入做对称摆动。

  参考资料

  1、《HART介绍》(在线版),模拟服务公司(1999年8月9日),地址:www.analogservices.com/about_part0.htm

  2、《工业自动化解决方案:传感器与现场发送器》,德州仪器公司(2012年3月9日)

  3、《运算放大器性能优化》,作者Jerald G. Graeme,发表于1996年12月1日第一版《纽约:McGraw-Hill专业版》。

  相关网站

  接口技术:www.ti.com.cn/lsds/ti_zh/analog/interface.page

  OPA2374:www.ti.com.cn/product/cn/OPA2374

  SN74AHC00:www.ti.com.cn/product/cn/SN74AHC00

  XTR115:www.ti.com.cn/product/cn/XTR115

关键字:HART  发送器

编辑:神话 引用地址:http://news.eeworld.com.cn/mndz/2013/1219/article_21988.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:通信电源在通信机房中的重要性
下一篇:通信电源的节能方案 呼吸式功率管理显效

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

利用HART兼容性简化模拟电流环路设计

  在工厂环境中,4mA至20mA模拟电流环路很常见。虽然各种应用中的基本信号调制均相同,但带宽要求却有很大的不同。工厂控制系统可能需要几百Hz环路带宽(来自位置和位移传感器),而典型的过程控制系统仅需几Hz更新速率,且一般都支持HART(可寻址远程传感器高速通道)。HART协议允许在传统的模拟4mA至20mA电流环路内实现双向1.2/2.2 kHz FSK(频移键控)调制数字通信。设计同时满足两种情况的4mA至20mA输入可能会有一定难度。图1中的电路图是一个支持HART的模拟输入的传统部署方法。  图1:集成无源滤波器且支持HART的输入。  图中,R1和RSENSE组成一个250Ω系统端接阻抗。HART FSK信号从该处
发表于 2017-09-25

现场总线的类型——HART(可寻址远程传感器数据通路)

可寻址远程传感器数据通路HART是美国Rosemount研制,HART协议参照ISO/OSI模型的第1、2、7层,即物理层、数据链路层和应用层,主要有如下特征: 1、物理层:     采用基于Bell202通信标准的FSK技术,即在4~20mADC模拟信号上叠加FSK数字信号,逻辑1为1200Hz,逻辑0为2200Hz,波特率为1200bps,调制信号为 0.5mA或0.25V#-(250 负载)。用屏蔽双绞线单台距离3000m,而多台设备互连距离1500m。 2、数据链路层:     数据帧长度不固定,最长25个字节。寻址范围0~15,当地址为0时,则处于4~20mADC与全数字通信兼容状态;当地址为1~15时,则处于
发表于 2016-08-13

485总线、hart总线、现场总线网络的区别及特性-九纯健

485总线、hart总线、现场总线网络的区别及特性 智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断。究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。最初是数据模拟信号输出简单过程量,后来仪表接口是RS232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。随后出现的RS485解决了这个问题。 RS485接口 RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式
发表于 2016-03-14

MSP430的HART从机控制器的设计

引言 现代工业生产活动的正常进行离不开现场设备和与之配套的控制主机,为了充分发挥现场设备的性能,控制主机和现场设备之间必须要有一套高效可靠的通信协议。传统工业控制领域多使用4~20 mA模拟信号来完成现场设备与控制主机之间的通信,但是模拟信号传输数据具有传输方向单一、传输数据量少等诸多不足。为了解决这些问题,在20世纪80年代中期,美国Rosemount公司提出了高速可寻址远程传感器协议(Highway Addressable Remote Transducer,HART)用来增强现场设备与控制主机之间的通信能力。 HART协议是一种用于现场智能设备与控制主机或监测系统之间的通过模拟线路传输数字信号的通信协议,在20世纪90
发表于 2016-01-13
MSP430的HART从机控制器的设计

Innovasic现场演示 “以太网的边缘化”技术

    工业以太网和确定性以太网半导体解决方案的领导者Innovasic将推出低复杂度以太网概念,把以太网与工业、建筑、交通和汽车网络的边缘相连。这一概念主要通过“低复杂度以太网节点”,将功率、面积和成本最小化,从而实现让最简单的“事物”不经过任何处理器直接与以太网相连。就网络而言,一个低复杂度以太网节点能够接入任何10/100/1000以太网,而且能够与任何工业以太网协议共存。未来的版本有望支持过程自动化的双线以太网标准,为4-20毫安HART网络提供低功率、高性价比的以太网选择。        &ldquo
发表于 2015-11-18

HART协议和现场总线技术

HART协议和现场总线技术有哪些异同? HART和现场总线技术都可以实现对现场设备的状态、参数等进行远程访问。同时,两种技术都支持在一条总线上连接多台设备的联网方式。HART和现场总线都采用设备描述,实现设备的互操作和综合运用。所以,它们之间有一定的相似之处。 它们之间的不同有以下四点: 1)现场总线采用真正的全数字通信,而HART是以FSK方式叠加在原有的4~20mA模拟信号上的,因此可以直接联入现有的DCS系统中而不需要重新组态; 2)现场总线多采用多点连接,HART协议一般仅在做监测运用的时候才会采用多点连接方式; 3)用现场总线组成的控制系统中,设备间可以直接进行通信,而不需要经过主机干预; 4)现场总线
发表于 2015-10-27

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved