0 dBm LO驱动的宽带3 GHz至20 GHz高性能集成混频器性能测试

2020-07-10来源: EEWORLD关键字:集成混频器  ADI

摘要

 

本文介绍仅需0 dBm LO驱动的宽带3 GHz至20 GHz SiGe无源混频器。新巴伦结构是实现宽RF带宽的关键创新。针对IF频段应用也采用相同的巴伦拓扑,支持300 MHz至9 GHz的宽IF。该高性能双平衡混频器可用于上变频或下变频。该混频器采用2 mm × 3 mm、12引脚小型QFN封装,提供23 dBm IIP3和14 dBm P1dB。采用3.3 V电源供电时,混频器功耗为132 mA。

 

简介

 

宽带混频器广泛应用于多功能无线收发器、微波收发器、微波回程、雷达和测试设备。宽带混频器使得在具有各种无线电参数的动态可编程性的无线电架构中使用单个混频器成为可能。

 

已经证明,CMOS和BiCMOS等先进硅技术能够在相对窄带应用中实现高性能混频器。因此宽带混频器最期待的实现方式是使用集总元件或其他兼容IC制造技术和几何形状的结构制成。平衡混频器是首选拓扑结构,因为与非平衡混频器相比,它们在线性、噪声系数和端口到端口隔离方面具有更好的整体性能。巴伦是单平衡混频器和双平衡混频器中用于在平衡和非平衡配置之间转换RF、LO和IF信号的关键组件。能够在标准IC铸造工艺中集成巴伦至关重要,这样才能生产出宽带集成混频器。

 

本文介绍一种可以在硅、GaAs或任何其他集成过程中轻松实现的创新巴伦结构。这种巴伦拓扑的带宽比传统巴伦结构更宽。在0.18 μm SiGe BiCMOS工艺中,使用宽带巴伦设计一款3 GHz至20 GHz高性能混频器。

 

宽带巴伦

 

混频器最重要的性能参数包括转换增益、线性度、噪声系数和工作带宽。集成混频器中使用的巴伦对所有这些混频器的性能都有重大影响。集成巴伦的关键性能包括工作频率范围、插入损耗、幅度/相位平衡、共模抑制比(CMRR)和物理尺寸。

 

集成电路应用中的两种常见巴伦结构是传统平面变压器巴伦1,2和Marchand巴伦。3,4这两种巴伦在窄带应用中都有良好的性能。平面变压器巴伦由两个紧密耦合的变压器组成。电感的自感和谐振频率是带宽的两个主要限制因素。自感限制低频端的带宽,非平衡和平衡终端的寄生电容和不对称终端限制高频端的带宽。Marchand巴伦由四条四分之一波长传输线组成,通常需要在芯片上占用大量空间。在集成电路中利用交错变压器布局,演示了微型Marchand巴伦。每条线段的电气长度要求限制了Marchand巴伦的带宽。当电气长度偏离所需的四分之一波长时,振幅和相位平衡就会降低。通常,设计良好的变压器巴伦或Marchand巴伦可以覆盖3×至4×最大-最小频率比的频率范围,且性能合理。

 

众所周知,Ruthroff巴伦具有非常宽的带宽5,6,7,许多分立元件产品都是基于Ruthroff结构开发。但是,还没有发现对微波集成电路应用类似结构。

 

 

图1.Ruthroff型宽带巴伦

 

图1a显示了一个Ruthroff型宽带巴伦原理图,可使用三个电感在平面半导体工艺中轻松构建。一个布局示例如图1b所示。在该布局中,只需要两个金属层,一个厚金属层用于三个低损耗电感,一个地下通道金属层用于连接。当有额外的厚金属层可用时,L1和L3可以垂直耦合,这样尺寸就会更小,它们之间的磁性耦合也可能会更好。

 

宽带特性得益于结构简单,这会导致寄生电容更少。单端信号由L1和L2分压得到。因此,巴伦的正端口正好是同相位单端信号电压的一半。由于L1和L3之间的负耦合,巴伦的负端口是具有180°相移的单端信号电压的一半。

 

在非常宽的带宽上可以实现出色的振幅和相位平衡。图2显示了宽带巴伦配置的仿真性能。振幅不平衡是S21和S31之间的差,相位误差是S21和S31与期望的180°之间的相位差。建议的巴伦具有非常好的振幅平衡,以及3 GHz到20 Ghz之间接近180°的相位差。在平衡混频器和推挽放大器等许多应用中使用巴伦时,共模抑制非常重要。图5b所示的仿真结果表明,3电感巴伦在3 GHz到20 GHz范围内的CMRR优于20dB。

 

 

图2.宽带巴伦的仿真性能

 

与变压器巴伦拓扑结构一样,3电感巴伦的带宽也受低频端电感和高频端寄生电容的限制。当电感较低时,负载阻抗对端口3的L1和L2之间的分压和端口2的转换电压影响较大。虽然在低频范围内振幅平衡和相位差仍然可以接受,但插入损耗增大。因此,较低的终端阻抗或较高的电感将有利于低频性能。在高频端,L1和L2之间的寄生电容会降低变压器的性能,导致较大的相位误差。精心布局并考虑降低寄生电容可以扩大巴伦的高频工作范围。

 

集成巴伦的物理尺寸限制了低端带宽。为了探索建议的巴伦结构在低频应用中的可行性,设计了一款0.5 GHz到6 GHz的巴伦,并与基于变压器的传统巴伦进行了对比,性能如图3所示。

 

 

图3.传统巴伦和新巴伦的仿真性能比较

 

集成宽带RF/微波混频器

 

宽带双平衡无源混频器设计采用Jazz的SiGe 0.18 μm工艺和3电感巴伦配置。混频器的RF、IF和LO端口为50 Ω单端端口,并在RF和IF端口集成巴伦。集成的RF巴伦经过优化,可覆盖3 GHz至20 GHz RF频率范围。集成的IF巴伦经过优化,可覆盖500 MHz至9 GHz的极宽频率范围。单端LO信号通过有源放大器电路在内部转换为差分信号以减小芯片尺寸。使用高速NPN的两级宽带放大器向无源混频器的MOSFET栅极提供足够的信号电压摆幅,且在1 GHz至20 GHz频率范围内只有0 dBm输入功率。

 

 

图4.宽带双平衡无源混频器

 

该混频器采用2 mm × 3 mm QFN小型封装,并使用铜柱倒装芯片进行互连。铜柱连接的附加寄生电容很低,可保持硅的宽带性能。该混频器采用3.3 V偏置电源,室温下的功耗为132 mA。测得的转换损耗和IIP3性能如图5.8所示。混频器的RF、LO和IF端口在其宽工作频率范围内匹配良好。图6显示这些端口的回波损耗。应该注意的是,RF回波损耗取决于IF端口阻抗,图6a中的结果是使用0.9 GHz的IF频率测得。

 

 

图5.宽带双平衡无源混频器测得的性能

 

 

图6.宽带双平衡无源混频器测得的回波损耗

 

表1.我们的宽带混频器与市场同类产品比较

 

 

与市场上的宽带混频器(如表1中所示)相比,使用3电感巴伦设计的混频器可同时实现RF和IF范围的最宽带宽。它具有最低的LO功耗和最高的集成级别。整体性能优于任何已报道的产品或发布的宽带混频器产品。

 

结论

 

本文介绍了一种适合现代半导体工艺平面实施方案的Ruthroff型宽带巴伦结构。设计了一款使用宽带巴伦的高性能双平衡混频器并对其进行了性能测量。

 


关键字:集成混频器  ADI 编辑:muyan 引用地址:http://news.eeworld.com.cn/mndz/ic502746.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:闪光的未必都是金子!ADI教你正确选择部件
下一篇:最后一页

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

ADI今日推出面向工业应用的新型宽带RF混频器
-可简化设计并显著缩短产品上市时间Analog Devices, Inc. (ADI)今日推出宽带无源同相正交RF混频器系列。HMC819x混频器支持从2.5至42 GHz的完整频谱,与当今的其他分立式器件相比,它们提供了显著优势,为需要宽带支持的各种工业应用提供了理想解决方案,包括测试和测量等应用。要覆盖相同的频率范围,原先需要超过10个分立式器件,但ADI公司的三款新器件就能实现这个目标,而性能没有丝毫影响。ADI公司的HMC819x混频器是业界唯一采用标准SMT封装的宽带解决方案,因而能够高效集成,缩短整体设计时间并降低风险,同时加快产品上市。面向工业应用的新型宽带RF混频器可简化设计并显著缩短产品上市时间
发表于 2017-05-19
ADI今日推出面向工业应用的新型宽带RF<font color='red'>混频器</font>
集成了 LO 频率倍增的宽带 2GHz 至 14GHz 混频器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2016 年 3 月 7 日 – 凌力尔特公司 (Linear Technology Corporation) 推出双平衡混频器 LTC5548,该器件可作为上变频器或下变频器运行,具极宽的 2GHz 至 14GHz 频率范围。LTC5548 在 RF 和 LO 端口集成了平衡-不平衡变压器,从而分别地在每个端口于 2GHz 至 13.6GHz 和 1GHz 至 12GHz 提供 50Ω匹配,同时实现单端操作。此外,IF 端口能够从 DC 到 6GHz,支持在带基的宽带发送器和接收器。LTC5548 在 5.8GHz 时具很高的 24.4
发表于 2016-03-08
<font color='red'>集成</font>了 LO 频率倍增<font color='red'>器</font>的宽带 2GHz 至 14GHz <font color='red'>混频器</font>
Linear 集成了LO倍频的宽带 2GHz 至 14GHz 混频器
 凌力尔特公司 (Linear Technology Corporation) 推出双平衡混频器 LTC5549,该器件既可作为上变频器又可作为下变频器工作,并具有非常宽的 2GHz 至 14GHz RF 频率范围。LTC5549 在 9GHz 时提供了卓越的 24.4dBm IIP3 高线性度。 该器件集成了仅需要 0dBm 驱动电平的 LO 缓冲器,可用来实现高效率微波发送器和接收器设计,从而有效地去除了外部大功率 LO 放大器电路。此外,LTC5549  具有一个用于 LO 信号的集成型片内、可切换倍频器,从而提供了一种可使用较低成本和常用低频合成器的选项。LTC5549 运用了专为扩展 RF 频率
发表于 2015-08-11
集成RF变压的高线性度有源变频混频器简化RF设计
集成了RF变压器的高线性度上变频RF有源混频器,能够提供卓越性能、线性度和低功率消耗。LT5519和LT5520有源混频器理想地结合了低失真、低 LO(本地振荡器)驱动要求、端口至端口高度隔离、低转换损耗、以及易用等性能。LT5519在0.7GHz 至1.4GHz范围内运行,LT5520则涵盖1.3GHz至2.3GHz频带,而不需要外置的匹配组件。此外,它们单端运行简化了设计工作。这些设备满足了无线基础设施市场的性能要求,能够应用在蜂窝基站、线缆调制解调器、视频点播头端设备及高性能卫星收发器。为保证单端输出的运行,LT5519和LT5520在芯片上集成了一个RF输出变压器。在器件的整个工作频率范围内RF端口内部50Ohm匹配
发表于 2013-12-22
<font color='red'>集成</font>RF变压<font color='red'>器</font>的高线性度有源变频<font color='red'>混频器</font>简化RF设计
集成RF混频器与无源混频器方案的性能比较
    过去,RF研发人员在高性能接收器设计中使用无源下变频混频器取得了较好的整体线性指标和杂散指标。但在这些设计中使用分立的无源混频器也存在一些缺点。   为了达到接收器整体噪声系数的指标要求,需要在射频(RF)增益级或中频(IF)增益级补偿无源混频器的插入损耗。与集成混频器相比,使用无源混频器时,用户不仅要考虑其输入三阶截点(IIP3),还要考虑输出三阶截点(OIP3)。无源混频器的二阶线性指标一般都比集成平衡混频器的差,而该指标在考虑接收器的半中频杂散性能时非常重要。由于混频器的线性度与本振驱动电平直接相关,所以必须产生相当大的本振注入,然后通过PCB布线馈入无源混频器的本振端口。此外,还需要外部RF放大级对这些信号进行
发表于 2012-10-22
继美信之后ADI又出手,收购INVECAS的HDMI业务
Analog Devices, Inc. (ADI)于7月27日宣布完成对INVECAS高清多媒体接口(HDMI)业务的收购。INVECAS总部位于圣克拉拉,专门提供嵌入式软件和系统级解决方案。此次收购将为ADI带来完整的音频和视频解决方案,以满足企业和消费电子市场日益增长的需求。该笔交易的财务条款未予披露。 ADI公司工业和消费电子事业部高级副总裁John Hassett表示:“HDMI技术在各种商业、专业、消费电子和汽车视频应用领域具有较高的需求。通过收购INVECAS的HDMI业务,ADI能够为客户的整个生产过程提供更加全面的解决方案——从芯片到认证再到最终产品。我们很高兴能够通过引入该团队的专业知识
发表于 2020-07-29
换一换 更多 相关热搜器件
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved