经典仪表放大器(PGIA)的新版本提供更高的设计灵活性

发布者:电路狂想曲最新更新时间:2021-09-10 来源: EEWORLD作者: ADI公司Hooman Hashemi,产品应用工程师关键字:ADI  仪表放大器  放大器  增益 手机看文章 扫描二维码
随时随地手机看文章

简介


与传感器连接时,仪表放大器(IA)作用强大且功能多样,但也存在一些限制,会阻碍可变增益IA或可编程增益仪表放大器(PGIA)的设计。在有些文献中,后者也被称为软件可编程增益放大器(SPGA)。因为经常遇到要求根据各种各样的传感器或环境条件调节电路的情况,我们需要这类PGIA。采用固定增益时,系统设计人员可能不得不应对欠佳的SNR,这会降低精度。我的同事发表了《模拟对话》文章“可编程增益仪表放大器:找到适合的放大器”,其中讨论了多种有助于创建精密、稳定的PGIA的技术。文章中指出了这种设计可能存在的缺陷,并展示了对可用解决方案和技术的全面调查。在本文中,我将介绍另一种促进这项工作的工具和方法,我会逐一介绍每个设计步骤,让大家快速掌握使用新发布的仪表放大器创建精密PGIA所需的外部元器件值。


一种新的仪表放大器架构


常见的仪表放大器架构如图1所示。

 

image.png

图1.经典仪表放大器


增益由外部电阻器RG的值来设定。要使用这类器件创建PGIA,只需切换RG的值即可。这种切换通常使用模拟开关或多路复用器来完成。但是,模拟开关的一些非理想行为让这项任务变得复杂——例如开关的导通电阻、通道电容,以及通道电阻随施加电压的变化。


图2所示为基于标准仪表放大器结构的变化版本。注意RG引脚如何被分解成±RG,S和±RG,F,单独引出,并从器件封装外部进行配置。

 

image.png

图2.LT6372-1架构允许配置一些IA内部节点


图2所示的架构有一个重要的实用特性:能够配置仪表放大器,使其可以在几个不同的增益值之间切换,同时将开关电阻造成的增益误差降至最低。此特性可用于创建PGIA。


如上所述,任何电阻可编程仪表放大器都可以通过切换增益电阻的值来改变其增益。但是,这种做法存在明显的缺点,例如:


开关导通电阻(RON)标称值及其变化会造成较大的增益误差。


由于需要的开关RON值较低,高增益值可能无法实现。


开关非线性会引起信号失真。这是因为信号电流直接流过RON,因此其值随电压的任何变化都会引起失真。


如图3所示,当LT6372-1配置为PGIA时,可以缓解这些问题,因为RG,F和RG,S引脚是单独引出的。在这个原理图中,惠斯登电桥(由R5至R8组成)产生的信号被放大,提供4个可能的增益值,用户可根据选择的SW1开关位置进行选择。利用LT6372系列引脚排列,我们可以创建一个PGIA以通过改变RF/RG比来获得所需的增益值。


此外,作为增益误差源的U1、U2模拟开关RON被降至最低,因为它可以与输入级反相端口及其反馈电阻串联。这样配置之后,RON只占内部12.1 kΩ反馈电阻总量的一小部分,因此对增益误差和漂移几乎没有影响。同样,由于RON值只占总反馈电阻的一小部分,其值随电压的变化几乎不会产生影响,因此开关非线性引起的失真可降至最低。此外,此器件的输入级由电流反馈放大器(CFA)架构组成,与传统的电压反馈放大器相比,它本身在增益变化时所允许的带宽或速度变化较小。1上述所有这些因素综合在一起,让我们能够使用低成本外部模拟开关,创建具有精密增益步进的精密PGIA。


1 CFA闭环带宽与RF的值成反比,而传统的电压反馈架构带宽与增益(RF/RG)成反比。


 image.png

图3.LT6372-1 PGIA电桥接口,提供四种增益设置


图4所示为PGIA的简化图,展示了梯形电阻的不同抽头(由总共8个模拟开关实现,每次短接2个来设置增益)如何配置电路。在此图中,两个开关组由四种可能的增益值之一来描述;–RG,S和+RG,S引脚短接至RF3/RF4结。

 

image.png

图4.LT6372-1的框图,以及PGIA的简化外部连接(未显示增益开关)


用于计算外部电阻的增益的设计步骤


图3显示完整的PGIA配置,包括所需的开关,该配置可适应任意大小的增益范围。其中包含四个可能的增益值,但是可以通过在设计中增加更多开关来增加该值。如前所述,允许配置RG,F和RG,S引脚这一特性让我们能够增加RF来增大增益,并降低RG来减小增益,以创建功能多样的PGIA。为了计算增益,我们可以将反馈电阻计为内部12.1 kΩ调整电阻加上RG,F到RG,S端口连接上与RG,F串联的其他电阻。相反,增益设置电阻是+RG,S和-RG,S之间的总电阻。总结起来就是:


RF = 12.1 kΩ + 两个输入放大器各自上面的RG,F和RG,S之间的电阻

RG = +RG,S和–RG,S之间的电阻


在这种配置下,增益的可能范围为1 V/V至1000 V/V。当U1和U2开关上的开关都设置为的短路引脚S3和D3时,对应的RF和RG值,以及产生的增益如下:


RF = 12.1 kΩ + 11 kΩ + 1.1 kΩ = 24.1 kΩ

RG = 73.2 Ω + 97.6 Ω + 73.2 Ω = 244 Ω

G = 1+ 2RF/RG = 1 + 2 × 24.1 kΩ/244 Ω = 199 V/V


很容易能够看出,决定外部电阻使用哪个值是一个迭代且彼此相关的过程,可能的增益值相互作用,对选择使用的电阻产生影响。为了便于参考,表1列出了一些常见的增益值组成值,但是,还可能存在许多其他的增益组合(G)。


表1.一些PGIA增益组合的组成值

image.png


确定PGIA的值的步骤


我们可以使用等式1中的公式依序计算增益网络中的单个电阻的值。该方程确定电阻的方式如图3所标示,表1中的案例2(增益为2、20、200和500 V/V)用作算出的示例。反馈电阻与增益设置电阻是交互式的;因此,公式必须是当前项取决于之前项的一个系列。计算

公式如下:

 

image.png


以下是一些定义:


RF1 = 12.1 kΩ(LT6372-1的内置电阻)

M:增益数量(本电路为4)

Gi:增益实例(在本例中,G1 – G4分别为2、20、200或500 V/V)

i:在1至(M-1)之间变化,用于计算RFi+1

 

image.png


等式1可用于计算任何增益组合所需的反馈电阻。一个虚拟变量(j)充当计数器,以保持之前的反馈电阻的连续总数。


在计算之前,建议先绘制与图3所示的网络类似的电阻网络。该网络中有(2 × M) – 1个电阻,其中M =增益数。在这个示例中,M = 4,所以,电阻串中将包含7个电阻。需要针对i = 1 → (M – 1)求等式1的值。


G1 = 2,G2 = 20,G3 = 200,G4 = 500 V/V


根据等式2:

 

image.png


根据i = 1 → (M-1),以迭代的方式求等式1的值

 

image.png


然后,可以使用以下等式计算中心电阻RG:

 

image.png


在进行最后一步计算之后,表1中的所有4个电阻值都经过计算,设计的计算过程完成。


测量的性能图


以下这些图显示了使用此PGIA配置可以实现的性能:

 

image.png

图5.PGIA大信号频率响应


 image.png

图6.PGIA CMRR与频率的关系


ADG444的开关电容使得在最低增益设置(G1 = 2 V/V)下,小信号频率响应出现一些明显的峰化(参见图7)。这种现象只在采用较低的增益设置时才会出现,因为LT6372-1的带宽扩展到足以受到开关的pF电容影响。解决这种副作用的方法包括,选择电容更低的开关(例如具有5 pF电容的ADG611/ADG612/ADG613),或者限制PGIA的最低增益设置。

 

image.png

图7.PGIA小信号低增益峰化


结论


本文介绍了如何利用新发布的LT6372系列器件的引脚排列为仪表放大器添加增益选择功能。文中分析了这种PGIA的特性,并详细说明了其设计步骤以及性能测量值。LT6372-1具有高线性度,提供精确的直流规格和性能,因此非常适合用于此类解决方案。


作者简介


HoomanHashemi于2018年3月加入ADI公司,从事新产品指标测试和展示产品特性与用途的应用开发工作。Hooman此前曾在Texas Instruments工作了22年,担任应用工程师,专注于高速产品系列。他于1989年8月毕业于圣克拉拉大学,获电气工程硕士学位;1983年12月毕业于圣何塞州立大学,获电气工程学士学位。联系方式:hooman.hashemi@analog.com。


关键字:ADI  仪表放大器  放大器  增益 引用地址:经典仪表放大器(PGIA)的新版本提供更高的设计灵活性

上一篇:经典仪表放大器(PGIA)的新版本提供更高的设计灵活性
下一篇:比较器

推荐阅读最新更新时间:2024-02-25 10:18

大联大世平集团推出基于ADI的电能质量在线监测系统方案
2014年8月7日,致力于亚太地区市场的领先电子元器件分销商—大联大控股宣布,其旗下世平针对电能质量监测市场,推出ADI电能质量在线监测系统方案。可以实现对电能的远程在线监测,对采集数据的分析、处理,并生成各种电能及电能质量报表、分析曲线、图形等,便于电能的分析、研究。 电力行业是关系国计民生的基础性行业。随着全球资源环境压力的不断增大、电力市场化进程的不断深入,可再生能源等分布式发电单元的数量不断增加,用户对电能质量要求的不断提升,传统网络已经难以满足社会发展需求,建设更加安全、可靠、环保、经济的现代电网成为全球电力行业的共同目标。随着网络通信技术和信息技术的迅速进步,为适应当代电力系统运行的需要,这项技术正朝着网络化
[测试测量]
大联大世平集团推出基于<font color='red'>ADI</font>的电能质量在线监测系统方案
用6v6gt胆机制作的推挽功率放大器电路图
  本机的电源部分也很简单,采用型RC滤波电路,因为推挽放大电路对电源纹波有较强的抑制作用,没有采用扼流圈式LC滤波,以减小整机重量和降低成本。图中5Y3G即国产的5Z2P,灯丝电压为5V,所需电流为2A。
[电源管理]
用6v6gt胆机制作的推挽功率<font color='red'>放大器</font>电路图
如何在Python或MATLAB环境中使用ACE快速评估数据转换器
如何在Python或MATLAB环境中使用ACE快速评估数据转换器 摘要 评估板(EVB)及其配套软件具有即插即用功能,可轻松评估ADI产品的性能。其图形用户界面(GUI)提供了直观的方式,可进行手动配置并与该设备通信。但是,在更复杂的产品中,如果不能自动处理这些重复性任务,那么在评估所有可用功能的同时,扫描产品的所有附加功能可能会变得非常耗时。 文中说明了如何记录宏,以及如何无需开发复杂的软件控制器代码,也能在Python®和MATLAB®环境中使用宏来自动处理某些评估任务。本文以ADI的AD7380和AD7606C-16为例自动处理所有用户交互,用于扫描不同的配置,发起转换,然后导出结果。通过使用这些示例,来自动
[模拟电子]
如何在Python或MATLAB环境中使用ACE快速评估数据转换器
ADI推出首款适用于便携式应用的D类音频放大器
  ADI公司日前发表首款脉冲密度调变(PDM)数字输入D类音频放大器SSM2517,适用于手机与其它便携式应用装置如便携式媒体播放器与笔记本计算机等。   SSM2517D类音频放大器将音频数字模拟转换器(DAC)、功率放大器、以及PDM数字接口整合在一组单芯片当中。这个经过简化的单芯片设计使得行动装置生产厂商能够节省物料表(BOM)成本,并且释放电路板空间。   SSM2517D类音频放大器在其小巧的1。5mm×1。5mm封装(该尺寸与部份既有的模拟输入D类放大器的尺寸相同)当中结合了无滤波器的单声道D类放大器与音频DAC。SSM2517中的PDM接口与许多手机和笔记本计算机应用装置中的数字麦克风所支持的数字接口相同。
[手机便携]
B类放大器工作原理
B类放大器工作原理 图9.6显示的是在时间轴上,B类( class B)放大器输出与输入波形的比较。 B类放大器偏压在截止点,所以ICQ=0且VcsQ=VCE(cutoff)。当输入信号使晶体管进入导通状态时,晶体管将离开截止点而工作在线性区。这种情况可以用图9.7的发射极跟随器线路加以说明,我们可以看到,输出波形与输入波形并不相同。 2.B类推挽式放大工作原理 我们已经看到,图9.7电路只在输入信号正半周导通。若要在整个周期都执行放大功能,必须加上一个在负半周导通的B类放大器。两个一起工作的B类放大器组合,称为推挽式( push-pull)操作。 有两种方式可运用推挽式放大器在输出端产生整个波形。第
[模拟电子]
B类<font color='red'>放大器</font>工作原理
运算放大器芯片输出扩流电路三例
工作原理:图1所示为三种集成运算 放大器 输出电流扩展电路,图(a )为双极性扩展电路;图(b)、图(c)为单极性扩展电路。在图1(a )所示电路中,当输出电压为正时,BG1管工作、BG2管截止;输出电压为负时,BG1管截止、BC2管工作。二极管D1、D2 的作用是给BG1、BG2管提供合适的偏压,以消除交越失真。以下三种电路的输出电流通常可达100mA左右,在需要更大的输出电流时,可再增加一级至两级由大功率管组成的射极跟随器。
[模拟电子]
运算<font color='red'>放大器</font>芯片输出扩流电路三例
AD推出I突破性MEMS传感器ADIS16355
  与因特网相似,全球定位系统(GPS)卫星导航正成为人们日常生活各个方面都离不开的一项泛在技术。在生死危急关头,GPS不仅可以使紧急救护车发现最快的响应路线路径;而且GPS可以使海上考古学家直奔研究船只目标搜寻船只残骸;此外,GPS还可以引导农场主确定在哪里安置设备,从而确保其庄稼种植量达到最大。ADI推出一种新的惯性传感方案,该方案可以为卡车车队、农业装备、商用飞机与小型飞机、舰艇、坦克以及其他依靠 GPS卫星导航保持精确位置信息的交通工具中的GPS信号损失或感应信号奇异性进行补偿。         由于采用ADI公司的iMEMS运动信号处理技术, ADIS16355惯性测量装置(IMU)允许工业设计人员首次在系统中
[传感器]
无线电池管理系统—提高电池性能、延长使用寿命和提升成本价值,实现智能电池生态方案
无线电池管理系统——通过提高电池性能、延长使用寿命和提升成本价值,实现智能电池生态系统解决方案 简介 乘用车和商用车的电气化正在步入市场渗透的新阶段。从技术可行性论证转向大规模生产高端优质汽车,这种转变是显而易见的。技术商业化为我们带来了更优质、更实惠的汽车。 但是,与传统的燃油车相比,人们仍然认为目前大多数的电动汽车(EV)价格昂贵,缺乏吸引力。因此,要确保成功且可持续的市场增长,降低成本和提高性能是关键。缩小尺寸、减轻重量和降低成本会影响电池系统在汽车整个生命周期内的竞争力。另一方面,延长续航里程也会大大影响其市场吸引力和竞争力。此外,随着越来越多的电动汽车达到其使用寿命,汽车制造商甚至将争夺从报废车辆中回收电池
[电源管理]
无线电池管理系统—提高电池性能、延长使用寿命和提升成本价值,实现智能电池生态方案

推荐帖子

C8051F元件清单——方便自购元件朋友
C8051F元件清单——方便自购元件朋友太好了,今天根据经验去电子城买了部分元件,明天下班再去!····要是早发现这帖就好了
drjloveyou DIY/开源硬件专区
4层板layoyt求助
ad09中,有bga的4层板如何删除内负电层的死电层或死地呢,有什么快捷键吗,如s+y,但是我试过了不行的,有人懂吗,O(∩_∩)O谢谢4层板layoyt求助s+y只是选中删除还要继续进行删除某个不需要的内电层,将该层全面选中S+Y,在后在LayerStackManager中将内电层的网络名该为NoNet,断开相应网络连接,再DEL删除 如果是想删除某个电层中的一块呢
阿武88 PCB设计
stm32的启动文件选择
MDK,用的3.40的标准外设库。─startup_stm3210f10x_ld.s,STM32小密度产品─startup_stm3210f10x_md.s,STM32中密度产品─startup_stm3210f10x_hd.s,STM32大密度产品_xl,超大密度_cl,互连型产品_ld_vl这个是对应哪种?stm32的启动文件选择_ld_vl==lowdensity,valueline
squall1900 stm32/stm8
103VE的SPI3使用求助
系统SPI1和SPI2工作正常,SPI3初始化后引脚状态都不对,请版主指点,谢谢!RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2,ENABLE);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15;GPIO_InitStructure.GPIO_S
zsk001 stm32/stm8
基于LPC1343的便携式心电图仪设计
这里可以用来描述一些详细的设计思路和者想法或者上传一些参考资料。基于LPC1343的便携式心电图仪设计这个很好啊,呵呵支持,顶顶。我想申请这个开发板,谢谢不错!学习学习......顶……现在开始了么?打算做几导联的?采样速率多少?不错,楼主太有才了楼主的的意思是想申请一块LPC1343的开发板吗?原帖由weboch于2010-6-3000:03发表楼主的的意思是想申请一块LPC1343的开发板吗?这个帖是当时申请板子的时候发的呵呵刚
莫恩 NXP MCU
【正点原子RV1126 AI Linux开发板】 基于FrameBuffer显示屏测试
测试LCD显示屏,基于FrameBuffer方式。在Linux系统中,显示设备被称为FrameBuffers设备。FrameBuffer设备对应设备文件为/dev/fbX。1、查询开发板显示屏的设备文件#ls/dev/fb*2、程序部分lcdfont.h/*******************************************************************************************
TL-LED 国产芯片交流
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved