​提高迟滞,实现平稳的欠压和过压闭锁

最新更新时间:2021-11-05来源: EEWORLD作者: ADI 公司高级应用工程师,Pinkesh Sachdev关键字:ADI  迟滞  欠压  过压  闭锁 手机看文章 扫描二维码
随时随地手机看文章

电阻分压器可将高电压衰减至低压电路能够承受的电平,且低压电路不会出现过载或损坏。在功率路径控制电路中,电阻分压器有助于设置电源欠压和过压闭锁阈值。这种电源电压验证电路常见于汽车系统、便携式电池供电仪器仪表以及数据处理和通信板中。


欠压闭锁(UVLO)可防止下游电子系统在异常低的电源电压下工作,避免导致系统故障。例如,当电源电压低于规格要求时,数字系统可能性能不稳定,甚至死机。当电源为可充电电池时,欠压闭锁可防止电池因深度放电而受损。过压闭锁(OVLO)可保护系统免受破坏性地高电源电压的影响。由于欠压和过压阈值取决于系统的有效工作范围,因此电阻分压器可用于通过相同的控制电路设置自定义阈值。为了能够在存在电源噪声或电阻的情况下实现平稳无颤振闭锁功能,需要利用阈值迟滞。在讨论了简单的UVLO/OVLO电路后,本文将介绍一些添加阈值迟滞的简单方法,当默认值不足时,有必要添加阈值迟滞。


欠压和过压闭锁电路


图1所示为欠压闭锁电路(目前无迟滞)。它有一个比较器,其负输入端具有正基准电压(VT)。比较器控制一个电源开关,用于打开或闭合电源输入和下游电子系统之间的路径。比较器的正输入连接至电阻分压器。如果电源接通,并从0 V开始上升,比较器输出为初始状态即低电平,电源开关保持关闭状态。当比较器正输入达到VT时,比较器输出断路。此时,底部电阻中的电流为VT/RB。如果比较器无任何输入偏置电流,该电流会流入RT。因此,当比较器断路时,电源电压为VT + RT × VT/RB = VT × (RB + RT)/RB。这就是通过电阻分压器设置的电源UVLO阈值。例如,如果VT为1 V,且RT = 10 × RB,则UVLO阈值为11 V。低于该阈值时,比较器输出低电平,将打开电源开关;高于该UVLO阈值时,开关闭合,电源为系统上电。通过更改RB和RT的比值就可以轻松调整阈值。绝对电阻值由预计的分压器偏置电流设定(本文稍后将详细介绍)。要设置OVLO阈值,只需交换比较器的两个输入(例如,图2中的下方比较器),这样高电平输入就会迫使比较器输出低电平,并打开开关。


 image.png

图1.采用电阻分压器、比较器和电源开关的电源欠压闭锁电路


电源开关也可通过N沟道或P沟道电源MOSFET来实现,不过这部分内容不是本文讨论的重点。之前的讨论假设N沟道MOSFET开关在栅极电压为低电平(例如:0 V)时打开(高电阻)。为了完全闭合(低电阻)N沟道MOSFET,栅极电压必须比电源电压至少高出MOSFET阈值电压,这需要使用电荷泵。保护控制器(LTC4365、LTC4367和LTC4368)集成了比较器和电荷泵,可驱动N沟道MOSFET,同时静态功耗较低。P沟道MOSFET不需要使用电荷泵,但栅极电压极性相反;也就是说,低电压闭合开关,而高电压打开P沟道MOSFET开关。


再来看电阻分压器:与使用两个单独的2电阻串相比,3电阻串可设置欠压和过压闭锁阈值(图2),同时一个分压器无需提供偏置电流。UVLO阈值为:VT × (RB + RM + RT)/(RB + RM),而OVLO阈值为:VT × (RB + RM + RT)/RB。AND栅极将两个比较器的输出合并,然后连接至电源开关。因此,当输入电压介于欠压和过压阈值之间时,电源开关闭合,为系统供电;否则,开关打开,断开系统供电。如果不需要考虑分压器功耗,则采用单独的欠压和过压分压器,分别独立调整阈值会更灵活。


 image.png

图2.采用单个电阻分压器的欠压和过压闭锁电路


具有迟滞功能的欠压和过压闭锁电路


在图1中,如果电源电压上升缓慢并且有噪声,或者如果电源本身具有电阻(如电池中的电阻),导致电压随负载电流下降,那么当比较器输入超过其UVLO阈值时,比较器的输出将在高电平和低电平之间反复切换。这是因为,比较器的正输入因输入噪声或负载电流通过电源电阻导致的压降而反复高于和低于VT阈值。对于电池供电电路,这可能会导致永无休止的振荡。使用具有迟滞功能的比较器可消除这种颤振,从而使开关切换更顺畅。如图3所示,迟滞比较器针会对上升(例如:VT + 100 mV)和下降输入(例如:VT – 100 mV)提供不同的阈值。比较器迟滞会随RB和RT放大,使电源电平为200 mV × (RB + RT)/RB。如果电源输入的噪声或压降低于该迟滞,就可以消除颤振。如果比较器不存在迟滞或迟滞较低,则有许多方法可以增加或提高迟滞。所有这些方法均在分压器接头处采用正反馈,例如:当比较器断路时,正在上升的比较器输入电平会更高。为简单起见,以下等式假设比较器本身没有迟滞。


 image.png

图3.通过在分压器接头与电源开关输出之间连接一个电阻来增加欠压闭锁阈值迟滞


分压器与输出之间的电阻(图3):


在分压器接头(比较器的正输入)与电源开关输出之间增加一个电阻(RH)。当电源电压从0 V开始上升时,比较器的正输入低于VT,比较器输出低电平,电源开关保持关闭状态。假设由于系统负载,开关输出为0 V。因此,将RH与RB并联,用于计算输入阈值。上升输入欠压阈值为VT × ((RB || RH) + RT)/(RB || RH),其中:RB || RH = RB × RH/(RB + RH)。高于此阈值时,开关打开,接通系统电源。为了计算下降输入欠压阈值,由于开关闭合,RH与RT并联,下降输入欠压阈值为:VT × (RB + (RT || RH))/RB,其中 RT || RH = RT × RH/(RT + RH)。如果比较器本身存在一定迟滞,则使用上一个等式中的上升或下降比较器阈值代替VT。回想一下图1中的示例,VT = 1 V且RT = 10 × RB,如果不存在比较器迟滞或RH,则上升和下降阈值为11 V。如图3所示,增加RH = 100 × RB,则上升输入阈值为11.1 V,下降阈值为10.09 V;也就是说,迟滞为1.01 V。该方法对OVLO无效,因为输入电平上升会关闭电源开关,从而导致RH将比较器输入电平拉低(这样会再次打开开关)而不是拉高。


连接开关电阻(图4):


增加迟滞的另一个方法就是连接可以改变底部电阻有效值的开关电阻。开关电阻可以并联(图4a),也可以串联(图4b)。我们来看看图4a:当VIN为低电平(比如说为0 V)时,比较器的输出(UV或OV节点)为高电平,从而打开N沟道MOSFET M1,并将RH与RB并联连接。假设M1的导通电阻与RH相比可以忽略不计,或可以包含在RH的值中。上升输入阈值与图3中的相同:VT × ((RB || RH) + RT)/(RB || RH)。一旦VIN高于该阈值,比较器输出就会变为低电平,从而关闭M1,并断开RH与分压器的连接。因此,下降输入阈值与图1中的相同:VT × (RB + RT)/RB。继续我们的示例,VT = 1 V,RT = 10 × RB且RH = 100 × RB,上升输入阈值为11.1 V,下降阈值为11 V;也就是说,RH产生了100 mV的迟滞。该方法和下述方法均可用于欠压或过压闭锁,因为其用途取决于比较器输出打开电源开关的方式(未显示)。


 image.png

图4.使用开关(a)分流电阻或电流和(b)串联电阻增加欠压或过压闭锁阈值迟滞


图4b的配置可得出上升输入阈值为:VT × (RB + RT)/RB,下降输入阈值为:VT × (RB + RH + RT)/(RB + RH)。图4中的RH = RB/10,因此上升输入阈值为11 V,下降阈值为10.091 V,也就是说,迟滞为909 mV。这表明,图4b配置需要一个更小的RH才能产生更大的迟滞。

连接电流源(图4a):


图4a的电阻RH可以使用电流源IH代替。该方法适用于LTC4417和LTC4418优先级控制器。当VIN为低电平时,比较器的高电平输出使能IH。输入阈值上升时,比较器的负输入为VT。因此,RT中的电流为IH + VT/RB,得出的上升阈值为:VT + (IH + VT /RB) × RT = VT × (RB + RT)/RB + IH × RT。一旦VIN高于该阈值,比较器的低电平输出就会关闭IH。因此,下降阈值与图1中的相同:VT × (RB + RT)/RB,且输入阈值迟滞为:IH × RT。


电阻分压器偏置电流


之前的等式假设比较器输入端的输入偏置电流为0,而示例只考虑了电阻比,而未考虑绝对值。比较器输入同时具有输入失调电压(VOS)、参考误差(也可以与VOS合并),以及输入偏置电流或漏电流(ILK)。如果分压器偏置电流(图1跳变点处的VT/RB)明显大于输入漏电流,则零泄漏假设成立。例如,如果分压器电流是输入漏电流的100倍时,漏电流引起的输入阈值误差将保持在1%以下。另一种方法是比较漏电流引起的阈值误差与失调电压引起的阈值误差。考虑比较器的非理想因素,图1输入欠压阈值等式变为:(VT ± VOS) × (RB + RT)/RB ± ILK × RT(类似于之前的迟滞电流等式),可重写为:(VT ± VOS ± ILK × RB × RT/(RB + RT)) × (RB + RT)/RB。输入漏电流表现为比较器阈值电压误差,通过选择适当的电阻,可以尽可能降低该误差(相对于失调电压),也就是,ILK × (RB || RT) < VOS。


举个例子,LTC4367欠压和过压保护控制器UV和OV引脚的最大漏电流为±10 nA,而UV/OV引脚比较器的500 mV阈值失调电压为±7.5 mV(500 mV的±1.5%)。根据预算,±3 mV(500 mV的±0.6%,或小于7.5 mV失调电压的一半)漏电流产生的阈值误差为:RB || RT < 3 mV/10 nA = 300 kΩ。要使用0.5 V比较器阈值设置11 V输入欠压阈值,则要求:RT = RB × 10.5 V/0.5 V = 21 × RB。因此,RB || RT = 21 × RB/22 < 300 kΩ,则RB < 315.7 kΩ。对于RB来说,最接近1%的标准值为309 kΩ,得出的RT为6.49 MΩ。跳变点处的分压器偏置电流为0.5 V/309 kΩ = 1.62 µA,是10 nA漏电流的162倍。为了在不增加比较器输入漏电流导致的阈值误差的情况下尽可能降低分压器电流,这种分析至关重要。


结论


在基于比较器的相同控制电路中,利用电阻分压器可轻松调整电源欠压和过压闭锁阈值。电源噪声或电阻需要阈值迟滞,以防止电源超过阈值时出现电源开关打开和关闭颤振。本文介绍了实现欠压和过压闭锁迟滞的一些不同方法。基本原理是比较器断路时,在分压器接头处会产生一些正反馈。增加或提高保护控制器IC迟滞时,有些方法取决于比较器输出或IC输出引脚的类似信号的可用性。选择电阻值时,应注意避免使比较器的输入漏电流成为阈值误差的主要来源。通过电子数据表提供所有相关等式(包括本文中介绍的等式),可供下载。


关于作者


Pinkesh Sachdev是ADI公司电源系统管理高级应用工程师。他拥有印度理工学院(印度孟买)电气工程学士学位以及斯坦福大学电气工程硕士学位。联系方式:pinkesh.sachdev@analog.com。


关键字:ADI  迟滞  欠压  过压  闭锁 编辑:张工 引用地址:http://news.eeworld.com.cn/mndz/ic553853.html

上一篇:基本DAC架构:分段DAC
下一篇:​学子专区—ADALM2000实验:源极跟随器(NMOS)

推荐阅读

RF转换器:一种支持宽带无线电的技术
。11 Gil Engel、Shawn Kuo和Steve Rose。“14位3 GHz/6 GHz电流导引RF DAC,采用0.18 µm CMOS,2.9 GHz时提供66 dB ACLR”。2012 IEEE国际固态电路会议,IEEE,2012。12 Daniel Fague。“最新RF DAC拓宽软件无线电的应用视野”。《模拟对话》,第50卷第7期,2016年7月。13 Patrick Pratt和Frank Kearney。“超宽带数字预失真(DPD):在电缆分配系统中实现带来的优势(功率和性能)和挑战”。《模拟对话》,第51卷第07期,2017年7月。作者简介Daniel E. Fague是ADI公司高速产品部的系统应用
发表于 2021-11-30
RF转换器:一种支持宽带无线电的技术
负载点DC-DC转换器解决电压精度、效率和延迟问题
功率。 图12.20 A双相单片稳压器POL解决方案 图13.比较两个版本的双通道转换器的电感电流和输出电流:(a) 同相通道与 (b) 反相通道作者简介Atsuhiko Furukawa于2006年加入凌力尔特(现在已成为ADI公司的一部分)。10多年以来,他一直为中小型客户提供多种应用技术支持。2017年,他被调到汽车部门,现在主要负责设计大型(几kW)和小型安全汽车应用。Atsuhiko是一名马拉松长跑健将,取得的最好成绩是3小时3分钟。联系方式:atsuhiko.furukawa@analog.com。
发表于 2021-11-26
负载点DC-DC转换器解决电压精度、效率和延迟问题
基于高集成度电化学方案的气体与水质检测
%,同比下降0.8个百分点;全国339个地级及以上城市平均优良天数比例为85.5%,同比上升2.2个百分点。有效的监管离不开监测平台方案,目前各种气体、液体监测平台方案在其中发挥了关键作用,本文以ADI的两款气体及液体检测信号链方案来分析。具有传感器诊断功能的电化学气体测量系统气体检测仪器广泛应用于从家用空气质量测量设备到工业有毒气体检测解决方案的各种应用。其中许多仪器使用电化学气体传感器。这种传感器技术需要专门的前端电路来进行偏置和测量。利用内置诊断特性(例如阻抗频谱或偏置电压脉冲与斜坡),可以检查传感器健康状况,补偿老化或温度引起的精度漂移,估计传感器的剩余寿命而无需用户干预。这种功能允许各个边缘节点更换智能、精确的传感器。集成
发表于 2021-11-25
基于高集成度电化学方案的气体与水质检测
运算放大器功耗与性能的权衡
。表1.低功耗运算放大器的权衡ADA4945-1双极性差分放大器妥善地权衡了上述这些特性。它具有低直流失调、失调温漂和出色的动态性能,非常适合多种高分辨率、功能强大的数据采集和信号处理应用,这些应用通常需要使用驱动器来驱动ADC,如图1所示,由ADA4945-1驱动AD4022 ADC。 ADA4945-1可配置多种功率模式,您可以在特定转换器上更好地权衡性能与功率。例如,在全功率模式下,可与AD4020配对,降低至低功耗模式后,可以适应AD4021或AD4022的低采样速率。 图1.高分辨率数据采集系统的简化信号链示例作者简介Thomas Brand于2015年加入德国慕尼黑的ADI公司,当时他还在攻读硕士。毕业后,他参加
发表于 2021-11-24
运算放大器功耗与性能的权衡
从物联网工厂到手术室:如何设计更好的通信系统
。与千兆以太网相比,即使在基本速度下,Camera Link标准输出的数据量也多达其两倍,且输出距离更短。Camera Link物理层基于低压差模信号(LVDS),由于与每条线路耦合的共模噪声都会在接收器端有效消除,因此本身具有EMC鲁棒性。LVDS物理层的EMC鲁棒性可通过电磁隔离进行改善。通过在摄像机和机器人链接上使用以太网,以及采用IEEE 802.1时间敏感网络(TSN)交换机的工业控制器,可以最大限度地实现工业摄像机和机器人操作同步。TSN定义了交换式以太网网络中用于时间控制数据路由的第一个IEEE标准。ADI提供全套以太网技术,包括物理层收发器和TSN交换机,以及系统级解决方案、软件和安全功能。表1.机器视觉摄像机
发表于 2021-11-23
从物联网工厂到手术室:如何设计更好的通信系统
用于地震学和能源勘探应用的低噪声、低功耗DAQ解决方案
大约-120 dB的THD。由于地震仪器由电池供电,因此功耗应控制在约30 mW。本文介绍两种信号链解决方案,其达成的目标要求如下:►PGIA增益:1、2、4、8、16►集成可编程宽带滤波器的ADC►增益 = 1时(-3 dB带宽为300 Hz至约400 Hz)的RTI噪声为1.0 μV rms►THD:-120 dB(增益 = 1时)►CMRR > 100 dB(增益 = 1时)►功耗(PGIA加ADC):33 mW►第二通道用于自测DAQ信号链解决方案ADI网站上没有一款精密ADC具备所有这些特性并能实现如此低的噪声和THD,也没有一款PGIA能提供如此低的噪声和功耗。但是,ADI公司提供了出色的精密放大器和精密ADC,可使
发表于 2021-11-18
用于地震学和能源勘探应用的低噪声、低功耗DAQ解决方案
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2021 EEWORLD.com.cn, Inc. All rights reserved