运算放大器功耗与性能的权衡

最新更新时间:2021-11-24来源: EEWORLD作者: ADI 公司 Thomas Brand,现场应用工程师关键字:ADI  运算放大器  功耗 手机看文章 扫描二维码
随时随地手机看文章

 高性能,低功耗:越来越多的应用需要满足这一需求,尤其是由电池供电的移动设备。特别是在物联网、工业4.0和数字化时代,这些手持设备大大方便了人们的日常生活。从移动生命体征监测到工业环境中的机器和系统监测,很多应用纷纷受益。智能手机和可穿戴设备等终端用户产品也要求更高的性能和更长的电池寿命。


因为提供电源的电池电能有限,所以需要在使用消耗电流最小的元件,以最大限度延长设备的运行时间。或者,通过降低功耗,使低容量电池也可以实现相同的电池寿命,同时减小尺寸、重量和成本。温度管理同样不容忽视。同样,更高效的元件也起积极作用。冷却管理需要占用空间,如果产生的热量减少,占用的空间也会减少。目前,市面上提供多种低功耗,甚至是超低功耗(ULP)元件。本文着重探讨低功耗运算放大器。


功耗与性能的权衡


在选择合适的放大器时,往往需要考虑运算放大器的功耗,并做出权衡。


低功耗往往也意味着低带宽。但是,这也取决于给定的放大器架构和稳定性要求。寄生电容和电感越高,通常带宽越低。例如,电流反馈放大器提供相对较高的带宽,但精准度较低。我们可以使用一些技巧来提高带宽-功率比。


例如,增益带宽积(GBW)一般如下:

 

image.png


Gm表示跨导,或者是输出电流和输入电压之比(IOUT/VIN),C表示内部补偿电容。


增加带宽的典型方法是增加偏置电流,这会使Gm增加,但会消耗更多功率。为了保持低功率,我们不愿意如此。


通常,补偿电容会设置主极点,所以理想情况下,负载电容根本不会影响带宽。


受放大器的物理特性限制,电容较低时,通常可以获得更高带宽,但这也会影响稳定性,在低噪声增益下,其稳定性会得到提高。但是,实际上,我们无法在更低噪声增益下驱动大型的纯电容负载。


在使用低功耗运算放大器时,需要权衡的另一因素是通常较高的电压噪声。但是,输入电压噪声是放大器最主要的噪声(占总输出宽带噪声的一部分),但也可能是电阻噪声。总噪声最主要的部分可能来自于输入级中的噪声源(例如,集电极产生散射噪声,漏极产生热噪声)。1/f噪声(闪烁噪声)因架构而异,是由元件材料中的特殊缺陷引起的。所以,它一般取决于元件的大小。相反,电流噪声在更低的功率电平下通常更低。但也不容忽视,尤其是在双极放大器中。在1/f区域,1/f电流噪声是放大器输出端的总1/f噪声的主要来源。其他权衡因素包括失真性能和漂移值。


低功耗运算放大器通常表现出更高的总谐波失真(THD),但是和电流噪声一样,双极放大器中的输入偏置和失调电流会随着电源电流降低而降低。失调电压是运算放大器的另一个重要指标。一般可通过调整输入端元件来降低影响,因此不会在低功率下导致性能大幅降低,所以VOS和VOS漂移在功率范围内是恒定的。外部电路和反馈电阻(RF)也会影响运算放大器的性能。电阻值较高时,动态功率和谐波失真会降低,但它们会增大输出噪声,以及与偏置电流相关的误差。


为了进一步降低功耗,许多设备都提供待机或睡眠功能。这样重要设备功能在闲置时可以停用,根据需要重新激活。低功耗放大器的唤醒时间通常更长。表1对前文所述的权衡因素进行了归纳和汇总。


表1.低功耗运算放大器的权衡

image.png


ADA4945-1双极性差分放大器妥善地权衡了上述这些特性。它具有低直流失调、失调温漂和出色的动态性能,非常适合多种高分辨率、功能强大的数据采集和信号处理应用,这些应用通常需要使用驱动器来驱动ADC,如图1所示,由ADA4945-1驱动AD4022 ADC。 ADA4945-1可配置多种功率模式,您可以在特定转换器上更好地权衡性能与功率。例如,在全功率模式下,可与AD4020配对,降低至低功耗模式后,可以适应AD4021或AD4022的低采样速率。


 image.png

图1.高分辨率数据采集系统的简化信号链示例


作者简介


Thomas Brand于2015年加入德国慕尼黑的ADI公司,当时他还在攻读硕士。毕业后,他参加了ADI公司的培训生项目。2017年,他成为一名现场应用工程师。Thomas为中欧的大型工业客户提供支持,并专注于工业以太网领域。他毕业于德国莫斯巴赫的联合教育大学电气工程专业,之后在德国康斯坦茨应用科学大学获得国际销售硕士学位。联系方式:thomas.brand@analog.com。


关键字:ADI  运算放大器  功耗 编辑:张工 引用地址:http://news.eeworld.com.cn/mndz/ic555411.html

上一篇:采样保持放大器
下一篇:最后一页

推荐阅读

基于高集成度电化学方案的气体与水质检测
%,同比下降0.8个百分点;全国339个地级及以上城市平均优良天数比例为85.5%,同比上升2.2个百分点。有效的监管离不开监测平台方案,目前各种气体、液体监测平台方案在其中发挥了关键作用,本文以ADI的两款气体及液体检测信号链方案来分析。具有传感器诊断功能的电化学气体测量系统气体检测仪器广泛应用于从家用空气质量测量设备到工业有毒气体检测解决方案的各种应用。其中许多仪器使用电化学气体传感器。这种传感器技术需要专门的前端电路来进行偏置和测量。利用内置诊断特性(例如阻抗频谱或偏置电压脉冲与斜坡),可以检查传感器健康状况,补偿老化或温度引起的精度漂移,估计传感器的剩余寿命而无需用户干预。这种功能允许各个边缘节点更换智能、精确的传感器。集成
发表于 2021-11-25
基于高集成度电化学方案的气体与水质检测
从物联网工厂到手术室:如何设计更好的通信系统
。与千兆以太网相比,即使在基本速度下,Camera Link标准输出的数据量也多达其两倍,且输出距离更短。Camera Link物理层基于低压差模信号(LVDS),由于与每条线路耦合的共模噪声都会在接收器端有效消除,因此本身具有EMC鲁棒性。LVDS物理层的EMC鲁棒性可通过电磁隔离进行改善。通过在摄像机和机器人链接上使用以太网,以及采用IEEE 802.1时间敏感网络(TSN)交换机的工业控制器,可以最大限度地实现工业摄像机和机器人操作同步。TSN定义了交换式以太网网络中用于时间控制数据路由的第一个IEEE标准。ADI提供全套以太网技术,包括物理层收发器和TSN交换机,以及系统级解决方案、软件和安全功能。表1.机器视觉摄像机
发表于 2021-11-23
从物联网工厂到手术室:如何设计更好的通信系统
用于地震学和能源勘探应用的低噪声、低功耗DAQ解决方案
精密数据采集(DAQ)系统在工业应用中深受欢迎。一些DAQ应用中需要低功耗和超低噪声。一个例子是地震传感器相关应用,从地震数据中可以提取大量信息,这些信息可用于广泛的应用,例如结构健康监测、地球物理研究、石油勘探甚至工业和家庭安全1。DAQ信号链要求地震检波器是将地振动信号转换成电信号的机电转换装置,适用于高分辨率地震勘探。它们沿着阵列被植入地面,用于测量地震波从非连续面(如层面)反射回来的时间,如图1所示。 图1.地震源和检波器阵列要捕获地震检波器的小输出信号,必须构建高灵敏度DAQ信号链以进行数据分析。总均方根噪声应为1.0 μV rms,有限的平坦低通带宽范围为300 Hz至400 Hz左右,同时信号链应实现
发表于 2021-11-18
用于地震学和能源勘探应用的低噪声、低<font color='red'>功耗</font>DAQ解决方案
从模拟前端到电源管理,ADI巩固医疗健康可穿戴市场地位
日前,ADI已经宣布完成了对于美信(现已并入ADI)的收购。在收购之初,ADI CEO Vincent T. Roche就曾经表示:“ADI 和Maxim广泛的产品组合具有高度互补性,我相信Maxim在工业领域真正帮助我们的地方在于我们的自动化和医疗保健领域的特许经营权(franchises)。”如今随着并购结束,原Maxim事业部正在加速针对医疗领域的创新。ADI(以下均指原Maxim)日前宣布推出临床级模拟前端 AFE MAX86178以及单电感多输出(SIMO)PMIC MAX77659,全方位的助力医疗市场客户实现医疗级别的远程监护产品及服务。关键生命体征传感技术助力远程医疗的实现Maxim Integrated (现已
发表于 2021-11-15
从模拟前端到电源管理,<font color='red'>ADI</font>巩固医疗健康可穿戴市场地位
​学子专区—ADALM2000实验:源极跟随器(NMOS)
子专区博客上找到问题答案。作者简介Doug Mercer于1977年毕业于伦斯勒理工学院(RPI),获电子工程学士学位。自1977年加入ADI公司以来,他直接或间接贡献了30多款数据转换器产品,并拥有13项专利。他于1995年被任命为ADI研究员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为“主动学习计划”撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。联系方式:doug.mercer@analog.com。Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年
发表于 2021-11-08
​学子专区—ADALM2000实验:源极跟随器(NMOS)
计算电流测量精度以提高功能安全
随着功能安全要求日益受到重视,改进系统诊断功能势在必行。其中,电流测量便是诊断评估的一项重要内容。要确定设计的测量精度,务必要了解误差源。正如之前在信号链基础知识 #141中所述,了解如何解读数据表对于计算高侧电流测量的精度非常重要。此外,了解外部元件的影响对于获得正确的电流测量结果也至关重要。高侧电流检测实现在高侧配置中,有两种常用的电流测量方法:• 使用差分运算放大器,如图1所示。 图1 用于高侧电流测量的运算放大器电路 使用电流检测放大器,如图2所示。 图2 用于高侧电流测量的电流检测放大器电路这两种方法具有一些根本的区别,主要体现在电流检测放大器集成了增益电阻器网络,而运算放大器则使用外部
发表于 2021-09-06
计算电流测量精度以提高功能安全
小广播
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2021 EEWORLD.com.cn, Inc. All rights reserved