pHEMT功率放大器的有源偏置解决方案

最新更新时间:2023-11-13来源: EEWORLD作者: Gweneivere Lasay,产品应用工程师关键字:pHEMT  功率放大器  偏置  放大器 手机看文章 扫描二维码
随时随地手机看文章

摘要


假晶高电子迁移率晶体管(pHEMT)是耗尽型器件,其漏源通道的电阻接近0 Ω。此特性使得这些器件可以在高开关频率下以高增益运行。然而,如果栅极和漏极偏置时序不正确,漏极沟道的高电导率可能会导致器件烧毁。本文探讨耗尽型pHEMT射频(RF)放大器的工作原理以及如何对其有效偏置。耗尽型场效应晶体管(FET)需要负栅极电压,并且必须小心控制开启/关断的时序。文中将介绍并比较固定栅极电压和固定漏极电流电路。我们还将仔细研究这些偏置电路的噪声和杂散对RF性能有何影响。


引言


图1显示了耗尽型pHEMPT RF放大器的简化框图。流经器件的RF信号路径是从栅极到漏极,交流耦合电容将RF信号与漏极和栅极上的直流偏置电压去耦。主电源电压通过电感施加到FET晶体管的漏极。


图1.耗尽型RF放大器的简化架构。


耗尽型器件的一个重要特性是,当栅极电压等于0 V时,漏源电阻接近0 Ω。因此,要操作这种器件,必须对栅极施加负电压。在图1中,该电压通过片上电感施加。


这种偏置方法的一个缺点是,两个电源不能同时开启。在栅极偏置电压之前施加漏极偏置电压会导致漏极电流突然增加,从而很快烧毁器件。因此,必须首先施加负栅极偏置电压来夹断沟道。开启和关闭放大器时,应使用表1中的步骤。


表1.放大器步骤


上电序列关断序列
  1. 向栅极施加负电压以将栅极置于夹断模式。

2. 向漏极施加正电压。
3. 增加栅极电压以实现
静态电流。
4. 施加RF信号。
  1. 去除RF信号。

  2. 降低栅极电压
    (负电压更大)以夹断栅极。

  3. 将漏极电压减小至0 V。

  4. 将栅极电压增加至0 V。


实践中可以跳过夹断步骤。例如,如果知道正常工作的最终栅极电压,那么可以立即施加该电压,而无需经过夹断步骤。


固定栅极电压偏置


图2显示了耗尽型RF放大器建立并维持固定栅极电压的电源管理电路。它使用开关稳压器、低压差(LDO)稳压器和负载开关来产生漏极电压。栅极电压由ADP5600产生,该器件包含电压逆变器和LDO稳压器。漏极电流由负电压LDO稳压器的反馈电阻设置。为确保安全的电源时序,开关稳压器的使能(EN)引脚与负电压发生器的电源良好(PGOOD)信号相连。这确保了负栅极电压始终出现在漏极电压之前。


图2.固定栅极电压偏置。

图3.固定漏极电流偏置(有源偏置控制)


此电路的主要缺点是没有考虑RF放大器VGATE与IDRAIN关系的器件间差异。漏极电流的器件间差异(假设栅极电压固定)可能很大,导致每个电路具有不同的漏极电流。漏极电流差异通常会影响压缩(OP1dB)和三阶交调失真(OIP3)(增益也会受到影响,但程度较小)。这种方法的好处之一是漏极电流将根据RF输入功率和RF输出功率的变化而增加或减少。因此,如果RF输入功率较低,功耗也会较低,反之亦然。


有源偏置控制


有源偏置控制是另一种方法。此技术不是固定栅极电压,而是固定漏极电流。图3中,有源偏置控制器通过测量漏极电流并改变栅极电压来调节漏极电流,使该电流即使在不同的RF输入条件下也能保持固定。此电路由LT8608降压稳压器和HMC920有源偏置控制器组成,后者可支持3 V至15 V的漏极电压和高达500 mA的总漏极电流。


HMC920内部的高电压、高电流线性稳压器(LDOCC引脚)可产生3 V至15 V的正电压和高达500 mA的电流。其输出通过内部MOSFET开关连接至VDRAIN端口,用于控制电源时序。为了设置功率放大器所需的漏极电压,必须使用公式1调整LDO稳压器的反馈电阻R5和R8:



其中,VDRAIN是所需的漏极电压值,IDRAIN是所需的漏极电流。常数0.5是内部MOSFET开关的RDS(ON)值。


内部电荷泵产生负电压VGATE。通过读取RSENSE处的电压,控制器检测漏极电流并改变VGATE处的电压。要设置漏极电流,必须使用公式2改变RSENSE(R4和R19):



当通过施加电源电压(VDD)开启HMC920时,会有一个信号发送至EN引脚以启动控制环路。VDRAIN最初会短接到地,以强制将其设为零。同时,VGATE处的电压最初会被拉低至最小电压VNEG。然后,VDRAIN将提高至设定的漏极电压值。RSENSE上将产生电压降,这会导致控制器改变栅极电压。关断期间,会有一个逻辑低电平信号发送至EN引脚。VGATE将降低至VNEG以切断放大器,VDRAIN处的电压将降至零。VGATE处的电压最终将达到零。此周期遵循正确的电源时序,以确保耗尽型放大器安全运行。它还具有过流和欠流报警、短路保护、功率折返等安全特性。HMC920数据手册中详细解释了该偏置控制器的其他安全机制。


该偏置控制器用作ADL8106宽带低噪声放大器的电源管理解决方案。ADL8106的工作频率范围为20 GHz至54 GHz,标称漏极电压为3 V,静态漏极电流为120 mA。图4和图5显示了相关的开启和关断波形。


4.开启时的电源时序波形。一旦施加VDD,EN变为高电平就表示控制环路启动。首先开启VGATE然后开启VDRAIN

5.关断时的电源时序波形。当VDD被移除时,EN变为低电平。VGATE将再次降至最小电压VNEG,VDRAIN将降至零。然后,VGATE最终将达到零。


噪声和杂散抑制


RF放大器RF输出端的杂散和噪声水平将取决于HMC920的输出噪声和杂散,以及放大器的电源调制比(PSMR)。图6显示了开关稳压器(LT8608)输入端以及VDRAIN和输出端口的PSRR曲线。图7和图8显示了VGATE和VDRAIN电压的输出频谱。基于ADL8106的PSMR,这些图中还包含了显示最大允许输出噪声和杂散的迹线。电源管理电路的输出噪声和杂散必须低于这些水平,以确保放大器的性能不会因电源管理电路而降低。有关该参数的理论、测量和计算的更深入解释,请参阅优化信号链的电源系统系列文章。


图6.LT8608 + HMC920的电源电压抑制比(VDD = 5 V,VDRAIN = 3 V,IDQ = 120 mA,VGATE = –0.64 V)。

图7.HMC920的V GATE和V DRAIN输出频谱以及ADL8106的最大允许噪声限值。

图8.HMC920的V GATE和VDRAIN输出频谱以及ADL8106的最大允许噪声限值。


使用外部负电源操作HMC920


在前面的示例中,HMC920的内部负电压发生器用于生成负栅极电压。此外也可以使用外部负电源,如图9所示。在这种情况下,ADP5600(逆变器和负LDO稳压器)用作产生栅极电压的负电源。与使用内部负电压发生器相比,其结果是噪声系数略低且增益略高。


图9.外部VNEG模式下的ADL8106和HMC920框图。

图10.使用HMC920的ADL8106在内部负电压发生器模式和外部负电压发生器模式下的噪声系数。

图11.使用HMC920的ADL8106在内部负电压发生器模式和外部负电压发生器模式下的增益。


该模式下的实际噪声性能仍然取决于所用外部负电压发生器所产生的输出噪声。从图7和图8中可以看出,在外部VNEG模式下使用HMC920也会产生噪声杂散,这些杂散仍低于最大允许电压纹波限值。要利用此模式,必须将VNEGFB引脚短接至地以禁用负电压发生器的反馈控制。对于增强型放大器(正栅极电压),VNEGFB和VGATEFB引脚都必须接地。


结语


耗尽型GaAs放大器因其宽带宽和高动态范围而广泛用于RF应用。但是,此类放大器需要负偏置电压,并且必须小心控制其电源时序。可以使用固定的负栅极电压来偏置这种放大器。其好处是电流消耗是动态的,随着RF输出电平而变化。本文介绍的电路使用固定漏极电流,产生低噪声漏极和栅极电压并安全控制其时序,这些电压不会降低RF放大器的额定性能。这样器件间的性能差异会更小,因为每个器件都以相同的漏极电流运行。然而,这种方法的一个缺点是漏极电流是固定的,不随RF功率水平而变化。在决定固定漏极电流水平时应谨慎考虑,它必须足够高才能支持所需的最大输出功率水平,但又不能过高以至于导致电流浪费。虽然可以使用外部负电源代替HMC920的内部负电压发生器,但对噪声的改善作用微乎其微。


关于作者


Gweneivere Lasay 2017年毕业于马普阿大学,获电子工程学士学位。她在功率半导体和SMPS设计领域拥有4年多的专业经验。她于2022年3月加入ADI公司,担任射频和高速电源连接部门的产品应用工程师。


关键字:pHEMT  功率放大器  偏置  放大器 编辑:张工 引用地址:pHEMT功率放大器的有源偏置解决方案

上一篇:适用于电化学传感器的运算放大器
下一篇:最后一页

推荐阅读最新更新时间:2023-11-15 19:10

基于LM4904的差分输入音频放大器
如图所示为LM4904差分输入音频放大电路,音频信号以差分的形式输入到 IN端和-IN端。
[模拟电子]
基于LM4904的差分输入音频<font color='red'>放大器</font>
电流模跨阻型前置放大器的设计
将电流模跨阻型前置放大器各方面的特征归纳如下: ☆ 电路名称:电流模跨阻型前置放大器 ☆ 实现功能:将光检测器输出的微弱电流脉冲信号转换成一定的电压脉冲信号 ☆ 实现工艺:21Lm GaAs H13T工艺 ☆ 工作速率:IOG b/s ☆ 适用系统:SDH STM-64 ☆ 电源电压:十3.3V和一2V ☆ 考虑光检测器寄生电容典型值:0.5pF ☆ 考虑光检测器输出电流最小值:5KA
[模拟电子]
电流模跨阻型前置<font color='red'>放大器</font>的设计
意法半导体推出200mA双运算放大器,可驱动高耗电的工业和汽车负载
2022 年 8 月 2 日,中国 – 意法半导体的TSB582双路高输出放大器可以简化工业电机、阀门、旋转变压器和汽车电动转向系统、自动泊车等感性和低阻性负载驱动电路。 TSB582 采用 4V-36V 电源,由两个运算放大器(运放)组成,每个运放的灌电流/拉电流最高200mA,可以桥接直连负载,允许用一个 TSB582 替换两个单通道功率运放或由分立元件构建的大电流驱动器。 在同一个封装内集成两个运放,TSB582 能够节省高达 50% 的电路板空间并降低物料清单成本。 TSB582 有工业级和汽车级两个版本,工业版本适用于控制机器人运动和位置、传送带和伺服电机,汽车应用包括电动转向、电驱电机等电机转子位置检测
[模拟电子]
意法半导体推出200mA双运算<font color='red'>放大器</font>,可驱动高耗电的工业和汽车负载
采用PWM功率放大器的新型中频电源设计方案
引 言 随着电力电子技术及器件的发展;特别是功率MOSFET、IGBT、MCT、IPM以及单片集成脉宽调制功率放大器等新型器件的出现;使电压型SPWM逆变器得到广泛的关注、开发和应用。 传统中频电源一般包括两个环节:即前级稳压;后级中频逆变;基本采用分立元器件。虽无传统的旋转部件;但体积仍然较大;效率较低;结构复杂;调试麻烦;不可靠因素较多;直接影响了电源及设备的可靠性。各种新型舰载电子设备对中频电源的体积重量和性能指标提出了更为严格的要求;而传统中频电源已无法满足;解决的途径只能是寻求更为先进的变频技术。 正弦脉宽调制SPWM(Sine Pulse Width Modulation) 技术利用
[电源管理]
基于NI PXI和LabVIEW缩短RF功率放大器的特征化时间
挑战:在不牺牲测量精度或提高设备成本的情况下,缩短对日益复杂的无线功率放大器(PA)的特征化时间。 解决方案:使用NI LabVIEW软件和NI PXI模块化仪器开发功率放大器特征化系统,让我们在减小资产设备成本、功率消耗和物理空间的同时,将测试吞吐量提高了10倍。 TriQuint是一个高性能射频解决方案的领导者,其产品涉及复杂移动设备、国防与航天应用以及网络基础设施等方面。现在,TriQuint通过使用GaAs、GaN、SAW和BAW技术为世界各地的组织提供创新的解决方案。工程师和科学家借助TriQuint的创新提高了产品的性能,并降低了其应用的总成本。 现有功率放大器特征化技术的挑战 尽管无线射频功率放大器主要被设
[测试测量]
基于NI PXI和LabVIEW缩短RF<font color='red'>功率放大器</font>的特征化时间
软磁环磁滞回线测量中的定标
随着电子信息产业的发展,与其密切相关的软磁材料及其性能测量引起了人们的高度重视。软磁材料绝大多数都用作工作在动态磁化条件下的磁性器件 ,如开关电源变压器磁芯、回扫变压器磁芯、滤波器磁芯等。磁性产品性能的好坏主要取决于作为导磁材料的磁心的性能 。因此设计者迫切需要知道软磁材料在实际应用条件下的磁性能。而磁滞回线包含了体现磁材料性能的参数,如矫顽力、剩磁等,有了这些参数才能进行最佳的设计。由于交流磁滞回线的形状受多种因素的影响,定量测量交流磁参量涉及到复杂的原理和计算,所以测量结果存在一定的误差。本文将着重叙述获取参数的原理和方法,并作出误差分析。 图1 磁滞回线测量原理 1 测量原理   测量动态回线的方法很多,经常使用的有
[测试测量]
软磁环磁滞回线测量中的定标
运算放大器容性负载驱动分析
问:为什么我要考虑驱动容性负载问题? 答:通常这是无法选择的。在大多数情况下,负载电容并非人为地所加电容。它常常是人们不希望的一种客观存在,例如一段同轴电缆所表现出的电容效应。但是在有些情况下,要求对运算放大器的输出端的直流电压进行去耦。例如,当运放被用作基准电压的倒相或驱动一个动态负载时。在这种情况下,你也许在运放的输出端直接连接旁路电容。不论哪种 情况,容性负载都要对运放的性能有影响。 问:容性负载如何影响运放的性能? 答:为简单起见,可将放大器看成一个振荡器。每个运放都有一个内部输出电阻RO,当它与容性负载相接时,在运放传递函数上产生一个附加的极点。正如图1(b)波特图幅频特性曲线表示,附加极点的幅频特性斜率比主极点
[电源管理]
运算<font color='red'>放大器</font>容性负载驱动分析
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved