datasheet

技术文章—采用28nm FD-SOI汽车级微控制器嵌入式PCM宏单元

2019-06-19来源: 互联网关键字:FD-SOI  PCM

汽车微控制器正在挑战嵌入式非易失性存储器(e-NVM)的极限,主要体现在存储单元面积、访问时间和耐热性能三个方面。在许多细分市场(例如:网关、车身控制器和电池管理单元)上,随着应用复杂程度提高,存储单元面积成为决定性挑战;在汽车动力总成(发动机和变速箱) 控制器和安全应用(制动系统)领域,符合最高165°C的工作温度范围至关重要。最后,优化的访问时间能够保证系统的整体能效。

 

FEOL(前工序) e-NVM [1]解决方案能够在稳健可靠的高良率芯片上实现非常短的随机访问时间(Ta),但是复杂的数据管理是这项技术的最大短板。该解决方案需要扇区擦除和重写过程,数据重新分配和新的代码执行操作也就不可避免。研究人员又提出了几个BEOL (后工序) e-NVM解决方案,主要优点包括不需要数据擦除操作,支持逐位修改数据,数据重新分配不再是必须的。在BEOL框架中,RRAM解决方案[2]的读取电流窗口和存储单元面积两项参数更有竞争力,但是工作温度范围较窄。MRAM存储器[3]的Ta性能非常有竞争力,但是存储单元面积较大,工作温度范围较窄。

 

本文提出一个采用28nm FD-SOI CMOS技术的嵌入式相变存储器 (PCM),这个BEOL e-NVM解决方案在存储单元面积、访问时间和温度范围三者之间达到了我们所知的最佳平衡点。本文介绍一个集成6MB PCM的汽车0级微控制器芯片,这是一个稳健可靠的嵌入式存储器解决方案,能够满足所有的汽车工业标准的严格要求。该PCM [4]采用的GexSbyTez材料经过优化,符合汽车工业技术标准的要求(150°C工作温度,10年数据保留期限)。因为与集成存储元件相关的工序很少,28nm被认为是在FD-SOI CMOS技术平台上充分发挥PCM优势的最佳节点[5]。支持汽车环境所需的5V接口需要增加额外的工序。FD-SOI技术让解决方案具有抑制静态泄漏电流的功能。FD-SOI器件的体偏置电压范围更广,可以将晶体管的VT阈值电压调到300mV左右,从而显著降低存储阵列内未选位的漏电流。

 

为了确保嵌入式存储器从闪存变成PCM过程中微控制器应用级兼容性,按照命令用途配置相变存储器结构,镜像出与闪存相同的逻辑架构,包括一个等效的闪存擦除操作(即使PCM架构不需要),如图1所示。这个6 MB的嵌入式代码存储器分为三个2 MB的读写同步(RWW)分区。从芯片上还看到一个有2个RWW分区的256kB的嵌入式非易失性数据存储器。两个存储阵列共用TILE结构。

 

图1 :闪存到PCM逻辑架构。PCM IP(本文)的设计目的是模拟现有(商品中)e-NVM闪存解决方案功能,并提供软件兼容性。

 

因为可以使用标准CMOS晶体管和低电压,PCM使能架构取得了很短的访问时间Ta。微安级别的PCM存储单元读取信号功耗,结合高速行解码器、快速读出放大器和阵列列泄漏电流抑制电路,可以将访问时间Ta降到10ns以内。选择器栅极可采用不同的驱动方式(由word line字线驱动器驱动),具体方式取决于在PCM单元上执行的操作(读取或写入)。在读出时,word line字线选择必须快速(纳秒级),只有用薄氧化物晶体管才能实现这个速度:选择器驱动电压低至0.85V,这还能让布局变得更紧凑。相状态变换需要相对较高的电压,所以需要在写入路径中用厚氧化物MOS管,从而使行解码器面积得到优化。

由于FD-SOI CMOS技术扩大了正向体偏压范围,因此可以在高温环境中有效地管理阵列泄漏电流。通过更大的VT变化范围,负电压动态管理功能使选择器实现了驱动能力与能效的平衡,将位线(bitline)泄漏电流降至最低,且不影响读取电流,同时还平衡了读写性能。稳压器反馈回路的温度范围有多个非线性子范围,以便在更高温度下实现更好的控制效果(图2)。

图2:与FDSOI选择器阵列配对的读写行解码器; 以体偏压是温度范围的函数的方式管理列泄漏电流控制策略

 

本解决方案还充分利用了PCM的低压读出功能,功耗明显低于传统闪存解决方案。在闪存方案中,行列读操作都需要4-5V的电压,然而在某些应用没有这个电压,因此还需要额外增加一个电荷泵,致使读功耗增加3-6倍。PCM可以使用常规电压偏置方法实现读取操作,而无需连接额外的电荷泵。

图3:差分读取放大器; PCM访问时序图,2个等待状态(WS)

 

图3所示是读出放大器(SA)。位线读取电压由NMOS共源共栅晶体管控制:存储单元读电流和基准电流流过共源共栅,最后注入比较网(refcp1和refcp2)。共源共栅结构支持比较网快速放电。在预充电阶段结束后,释放这些比较网,网络动态电压演变被转换为内部锁存器的数字输出,用于偏置两个PMOS,以产生电源电压vdif1和vdif2。vdif1和vdif2的压摆率差用于正确地触发锁存结构,读取时序图如图4所示。

图4. 差分读出放大器区分PCM阵列内容的读操作时序图

 

图7是一个完整的微控制器芯片的显微照片:包括ADC、振荡器、PLL、稳压器和SRAM。PCM单元面积为40F²。

图7.内嵌28nm FD-SOI的PCM非易失性存储器的汽车0级微控制器芯片的显微照片。

 

我们在该芯片的多个样片上测量了读取时间性能。系统设置是2个等待状态对应3个时钟周期,其中两个时钟周期分配给阵列读取操作,一个周期分配给数字处理运算,包括ECC。我们使用shmoo技术在不同的温度和电压下测量系统性能(见图5),在227MHz主频运行时, Ta为8.8ns。我们验证了在0.85V至1.05V电压范围内、-40°C至165°C温度范围内的读取能力。

 

与传统的FEOL解决方案相比,PCM单个位可修改特性使字节/字写入时间性能非常出色(30us)。因为不再需要擦除操作,PCM写入时间大幅降低,写吞吐量达到0.83MB/s。PCM可以覆盖数据,引发业界对写周期概念以及E2仿真算法必要性的重新探讨。写耐久性测试后的重置和置位分布如图5所示,从图中可以看到重置和置位尾部之间宝贵的读取识别裕量。在新品和1万次读写之间未见性能降低。

图5. 设为2个等待状态,测量在三个不同温度下的读取性能(shmoo图)。在最差条件下测量的读访问时间8.8ns。 耐久性测试后,在256KB上的SET和RESET分布情况。1万次读写后没有观察到读取窗口关闭。

 

图6的表格给出了PCM存储器的主要特性以及与当前最先进技术的比较情况。PCM的存储单元尺寸较小,读写性能均衡,具有与方案2和3相同的单个存储单元修改功能,但方案2和3不能用于汽车系统。方案1虽然读写速度快,但在数据修改方面效率较低。本文讨论了市场首个在后工序实现嵌入式非易失性存储器的汽车微控制器,该嵌入式存储器容量是6MB,采用28nm FDSOI制造技术,工作温度范围-40°C至165°C。该产品是完全模拟传统e-NVM闪存母产品的相同功能,能够满足主要技术规格的要求。该解决方案证明,在最恶劣的汽车环境中,PCM至少可以替代闪存,解决高电压需求的挑战,促进嵌入式技术缩小尺寸。



[1]

ISSCC2015

本文

[2]

ISSCC2018

[3]

ISSCC2018


代码

数据

代码

数据



技术

28nm SG-MONOS

 

28nm FD-SOI  PCM

 

40nm RRAM

28nm STT-MRAM

集成方式

FEOL

BEOL

BEOL

BEOL

存储单元面积

67F²

40F²

53F²

75F²

存储容量

2MBx2

64kB

6MB

228kB

11Mbit

1Mb

电源

1.1V+/-0.1V, 2.7..5.5V

0.85V/1.1V, 2.7V..5.5V

1.1V

1.2V/1.8V

工作温度

-40°C..170°C

(汽车 0)

-40°C..165°C

(汽车 0)

-40°C to 125°C

25°C to 120°C

 I/O数量()

(128+ 10)x2

32 + 7

(128+ 17)x2

128+ 17

16

随机访问时间

5ns

100ns

10ns over full V/ T° range

8.8ns @ 0.85V, 165°C (最恶劣条件)

9ns @ 1.1V, 25°C

6.8ns @ 0.85V, 25°C *

写入速度

2.0MB/s

150us/4B

0.83MB/s

30us/ 32b

NA


擦除速度

0.91MB/s

1.5ms/64B

无需擦除操作

无需擦除操作d

无需擦除操作

无需擦除操作

修改速度

0.63MB/s

1.65ms/4B

0.83MB/s

30us/32b


耐写次数

1万次

>1MB cycles

1000

10万次

1000


读电流窗口

@ 10-5cumulative

BER, T0



10µA @ 1…10k cycles, 25°C

22µA* @ 1k cycles, 25°C

 


最大存储容量

32MB

512K

32MB

512KB

/字节 修改

图6. 汽车级0微控制器内的28nm FD-SOI CMOS嵌入式PCM的主要性能,并与现有技术的对比情况。

 

参考文献


[1]  Y. Taito, et al., A 28nm Embedded SG-MONOS Flash Macro for Automotive Achieving 200MHz Read Operation and 2.0MB/s Write Throughput at Tj of 170°C, ISSCC, pp. 132-133, 2015

[2]  C.-C. Chou, et al., An N40 256Kx44 Embedded RRAM Macro with SL-Precharge SA and Low-Voltage Current Limiter to Improve Read and Write Performance, ISSCC, pp. 478-479, 2018

.

[3]  Q. Dong, et al., A 1Mb 28nm STT-MRAM with 2.8ns Read access time at 1.2V VDD Using Single-Cap Offset-Cancelled Sense Amplifier and In-Situ Self-Write-Termination, ISSCC, pp. 480-481, 2018.

[4]  P. Zuliani et al., Overcoming Temperature Limitations in Phase Change Memories with Optimized GexSbyTez, IEEE Transactions on Electron Devices, Vol. 60, No. 12, December 2013

[5]     hidden reference

 


关键字:FD-SOI  PCM

编辑:muyan 引用地址:http://news.eeworld.com.cn/qcdz/ic465195.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:接连意外自燃惹争议,电动汽车如何用BMS来“消消火”?
下一篇:引领情感科技市场?合众汽车打造PIVOT智能座舱系统

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

新能源汽车的下一个风口,超全面解析(技术篇)

,因此充电器必须要有直流转换器。车载充电器电压范围一般在85V-265V,这样使得车辆可以在世界任何地方充电。在车载充电器中有大量的功率三极管作为功率开关器件使用。功率三极管包括了双极型管,MOS管以及大红大紫的IGBT。 [page]FD-SOI赋能自动驾驶 当半导体工艺制程发展到22纳米时,为了满足性能、成本和功耗要求,延伸发展出FinFET和FD-SOI两种技术。由于半导体龙头英特尔主导推广FinFET技术,并得到晶圆代工大厂台积电的支持,使得FinFET技术大行其道。FinFET工艺和FD-SOI工艺均由胡正明教授发明,其实这两个工艺真的是互补的,如果用汽车发动机来比喻的话,FinFET像是通过某种方法拓展
发表于 2019-07-03
新能源汽车的下一个风口,超全面解析(技术篇)

新能源汽车的下一个风口,超全面解析(产业篇)

。 此外,未来的电动汽车还将与自动驾驶、智能互联技术紧密融合,也将与共享出行等新的商业模式紧密融合,每一家电动汽车厂商的成功其实也将是行业整体生态系统的成功。100年前,电动汽车的发展中心在欧洲与美国。但这一次,焦点将转向中国。 后续将着重介绍新能源汽车发展详情。[page]全球共享万亿盛宴 近年来全球汽车总产量呈缓慢增长态势,根据OICA最新数据,2017年全球乘用车产量约为7346万辆,同比增长1.9%,受2017年购置税即将退出导致的销量高基数及2018年宏观经济下行影响,根据中汽协,2018年中国汽车产量约为2352万辆,同比下降5.2%。尽管下游整车增速放缓,但基盘依旧庞大,为汽车电子行业规模提供
发表于 2019-07-03
新能源汽车的下一个风口,超全面解析(产业篇)

FD-SOI热度不减 ST全力进军

汽车数字化新架构的催化剂 ADAS、车联网、信息娱乐系统、动力系统等涉及的芯片或传感器等可采用FD-SOI工艺,FD-SOI在汽车当中的应用十分广泛,并且随着汽车电子演进而不断发展,每辆汽车平均有100平方毫米的FD-SOI面积。 随着FD-SOI工艺渐成气候,预计到2030年,软件将占汽车价值的30%份额。对于处理能力来讲,汽车将从原有的分布式架构9k DMIPs/Car以10倍的速度变身为90k DMIPs/car的集成实时域架构。  为此,ST的恒星(Stellar)系列汽车微控制器(MCU)将发挥重要作用,恒星系列MCU是汽车微控制器技术的一项突破。集28nm FD-SOI制造工艺
发表于 2019-06-17
FD-SOI热度不减 ST全力进军

优化衬底,建本土团队,Soitec助力中国5G腾飞

随着FD-SOI产业的快速增长,生态系统稳步推进,FD-SOI技术在5G、物联网、AI、自动驾驶等领域显示出新的增长趋势。SOI技术也越来越受到中国政府的重视,产业链环节各企业也在加速发展。 FD-SOI:一项创新的半导体技术 FD-SOI是一项利用成熟的平面工艺的创新技术(采用现有的制造方法和基础设施),FD-SOI可以在无需全面改造设备结构、完整性和生产流程的前提下实现摩尔定律下的芯片面积微缩、能耗节省、性能提升及功能拓展。FD-SOI 元件与目前主流的设计与电子设计自动化(EDA)工具相容,因此可提供快速入市的解决方案。该技术需要使用FD-SOI基板来制造使用了FD-SOI技术的芯片。 近几年
发表于 2019-03-25
优化衬底,建本土团队,Soitec助力中国5G腾飞

Soitec扩大与三星晶圆代工厂合作,确保FD-SOI晶圆供应

Soitec(巴黎泛欧证券交易所上市)是设计和生产创新性半导体材料的全球领军企业,今日宣布将扩大与三星晶圆代工厂的合作,以确保全耗尽绝缘体上硅(以下简称FD-SOI)的晶圆供应。该协议不仅延续了现有的合作关系,还为加强两家公司的FD-SOI供应链和为客户大批量生产奠定了坚实的基础。 在两家公司的共同领导下,FD-SOI现已成为低成本,高效益,低功耗设备的标准技术之一,广泛应用于消费品,4G/5G智能手机、物联网和汽车应用等领域。该协议建立在两家公司已有的紧密合作基础之上,同时还确保了三星28FDS FD-SOI技术的晶圆供应量。  “该战略协议充分证实了FD-SOI在业内的广泛应用。”Soitec数字
发表于 2019-01-22

LPC1768 SPI 外设控制DA(PCM1796)调试记录

;          /* 设置P0.17、P0.18             */    /* 引脚为SPI引脚                */    /* 初始化SPI寄存器  PCM1796 SCK 最大10M    */    LPC_SPI->SPCCR  =  0x48;   
发表于 2018-12-12

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved