如何使用F-RAM 解决方案来增强 ADAS 的可靠性

2020-03-24来源: EEWORLD关键字:非易失性存储器  ADAS  传感器

非易失性存储器 (NVM) 在几乎所有嵌入式系统设计中都起着关键作用,但许多设计对非易失性存储器在数据写入和访问速度、数据保留、低功耗等方面的要求越来越严格。在汽车应用中更是如此,设计人员正在努力打造更先进的功能,例如高级辅助驾驶系统 (ADAS) 这类任务关键型功能。

 

为确保这些系统安全可靠地运行,设计人员需要深入研究先进的铁电随机存取存储器 (F-RAM),作为要求可靠性高、功耗低且比当前 NVM 解决方案速度更快的低功耗汽车级 NVM 的选择。


本文讨论 F-RAM 技术的关键特性,并介绍开发人员如何使用 Cypress Semiconductor 的两款 F-RAM 解决方案来增强 ADAS 的可靠性,,并以 ADAS 为代理,将 F-RAM 的使用范围扩大至其他任务关键型应用。

 

汽车 NVM 要求


汽车行业不断集成具有更高分辨率和更快更新速率的更先进传感器,汽车安全应用则是这种行业趋势的缩影。ADAS、电子控制单元 (ECU) 和事件数据记录仪 (EDR) 等汽车子系统的持续发展,并高度依赖于从各种传感器收集到的大量数据。任何数据丢失,甚至数据访问速度的滞缓,都有可能危及系统安全、车辆和乘客。

 

例如,在 ADAS 设计中,写入电可擦除可编程只读存储器 (EEPROM) 所需的时间可能会引入灾难性的延迟时间,导致旨在避免检测到的危险情况的自动操作功能反应迟缓。在 EDR 设计中,如果车辆事故引发电源故障,那么写入速度缓慢可能导致关键传感器数据丢失,致使了解事故根本原因所需的数据消于无形。

 

F-RAM NVM 特性


采用 F-RAM 技术构建的存储器件可以有效地替代 NVM,满足在可靠数据存储和高速访问方面日益增长的需求和性能要求。此类器件由锆钛酸铅(Pb[ZrxTi1−x]O3,简称为 PZT)制成。PZT 具有独特的性质,施加电场后,PZT 晶体中嵌入的金属空位(阳离子)依据电场方向获得两种可能极化状态(向上或向下)中的一种(图 1)。

 

图 1:F-RAM 技术利用了 PZT 材料在受到电场作用时表现出的两个同样稳定的能态。

 

由于两者同是低能态,当移开电场时,阳离子将继续处于其最近的极化状态(图 2)。施加正或负电场时,阳离子将再次快速转变至适当的极化态,遵循与铁磁材料类似的特征磁滞回线。

 

图 2:PZT 材料遵循特征磁滞回线,响应施加的电场而在两个稳定的极化态之间切换。

 

F-RAM 技术的特性直接决定了采用该技术制造的 NVM 器件具有许多优点。两种 PZT 能态同样稳定,因而阳离子可数十年乃至数百年保持在其最后位置不变,使得基于 PZT 的 F-RAM NVM 器件具备前所未有的数据保留期限。此外,该技术基于阳离子位置,而不是其他 NVM 技术的电荷储存机制,因此 F-RAM 器件具备固有的辐射耐受性,不受电离辐射的单粒子翻转影响。

 

除了长期存储的优势之外,F-RAM 技术还增强了 NVM 器件的动态性能。状态转变非常迅速,并且只需很少的能量,克服了任务关键型应用中与使用 EEPROM 或闪存有关的根本限制。在相对较慢的写周期中,EEPROM 和闪存器件需要一个与数据缓冲有关的相当长“停留时间”(soak TIme)。写周期中的这种额外延迟会导致数据处于风险中,如果在操作完成并检查最终读取状态之前电源出现故障,数据可能会完全丢失(图 3)。

 

图 3:与 F-RAM 器件相比,EEPROM 或闪存写操作需要相当长的停留时间(红色突出显示部分),在此期间数据仍处于风险之中。

 

为了应对 EEPROM 或闪存写周期较慢的问题,开发人员如果希望减轻电源故障的影响,就需要添加大电容或电池及适当的稳压器,使 NVM 电源电压维持足够长的时间以便完成写操作。相比之下,F-RAM(例如 Cypress Semiconductor 的 Excelon-Auto 器件)在写操作期间以总线速度工作,大大降低了关键数据丢失的可能性,而且无需在设计中使用补充电源。

 

汽车级 F-RAM 器件


Excelon™-Auto F-RAM 器件在功能上与串行 EEPROM 和串行闪存相似,旨在满足关键任务应用对可靠、高性能 NVM 的需求。汽车系统设计人员可以使用这些符合 AEC-Q100 标准的器件取代其他类型的存储器;有两种型号可供选择:CY15V102QN 采用 1.71 至 1.89 V 电压,CY15B102QN 采用 1.8 至 3.6 V 电压。两者都是 2 兆位 (Mb) 器件,采用 256 Kb x 8 逻辑组织结构。

 

在 -40°C 至 +125°C 的工作温度范围内,Excelon F-RAM 的数据保留期限远远超出其他 NVM 技术。例如,CY15x102QN 在 85°C 的温度下运行时可以保留数据大约 121 年。数据保留期限与温度成反比,如果被迫在典型发动机温度的较高一端运行(例如 95°C),则 F-RAM 的估计数据保留期限为 35 年。

 

在可靠性方面,F-RAM 的读 / 写周期耐久性为 1013,比典型 EEPROM 或闪存高出大约 7 个数量级。因此,使用此类 F-RAM 器件的开发人员不需要实施损耗均衡(将写操作分配到各扇区以解决其他 NVM 技术存在的写周期有限的问题)之类的技术。

 

采用 F-RAM 的简化设计


在典型设计中,开发人员可以使用此类器件直接替换或补充其他类型的 NVM 器件,例如 NOR 闪存。例如,在 ADAS 设计中,开发人员可以同时使用 NOR 闪存和 Excelon F-RAM,前者用于存储固件,后者则能可靠地处理来自许多汽车子系统(为 ADAS 应用提供输入)的多个数据流(图 4)。

 

图 4:汽车 ADAS 开发人员可以在基于微控制器 (MCU) 的设计中,将 Excelon F-RAM 器件(用于存储关键数据)与 NOR 闪存器件(常用于存储固件或配置数据)结合起来使用。

 

开发人员只需将 Excelon F-RAM 简单地连接到主机处理器的串行外设接口 (SPI) 总线,便可轻松将其加入设计。CY15x102QN F-RAM 设计用作 SPI 从器件,支持高达 50 兆赫兹 (MHz) 的 SPI 时钟速率。在典型硬件配置中,开发人员将 F-RAM 的串行输入 (SI) 和串行输出 (SO) 分别连接到 SPI 主控器的主输出从输入 (MOSI) 和主输入从输出 (MISO) 线。随后再连接到相应的串行时钟 (SCK) 和片选 (/CS) 线,便完成了硬件接口。开发人员可以将多个器件并用来共享主机的 SPI 总线(图 5)。

 

图 5:开发人员可以使用共享 SPI 总线将主机处理器与一个或多个 CY15x102QN F-RAM 连接起来。

 

针对没有 SPI 功能的 MCU,CY15x102QN 器件支持一种简单的替代方案,即利用微控制器的通用 IO (GPIO) 来仿真 SPI 硬件接口,从而连接到 F-RAM。开发人员只需使用三个 GPIO 便能实现此接口,即 F-RAM 的 SI 和 SO 数据线使用同一引脚(图 6)。

 

图 6:针对没有原生 SPI 功能的微控制器,开发人员可以简单地使用微控制器的通用 IO 来仿真 SPI 协议,从而访问 CY15x102QN 串行 F-RAM。

 

在标准 SPI 协议中,主器件通过拉低 /CS 来启动事务处理。在 /CS 变为低电平后,F-RAM 将下一个字节解释为操作码。例如,写操作对应的是 SPI 标准写操作码 (02h),加上三字节地址和一些数据字节(图 7)。

 

图 7:Cypress 的 CY15x102QN F-RAM 器件支持标准 SPI 操作码和协议,开发人员通过顺序发送写操作码 (02h)、地址和数据便可轻松执行零延迟写操作。

 

对于 2 Mb CY15x102QN F-RAM,地址是一个三字节序列,忽略高六位。Cypress 建议将此高六位设置为零,以便将来能轻松过渡到更高容量的 F-RAM 器件。

 

读操作遵循相同的协议。接收到标准读操作码 (03h) 和地址后,F-RAM 器件通过 SO 顺序发送数据字节,自动递增存储器地址,同时 /CS 保持低电平,时钟信号继续产生。因此,开发人员可以执行批量读操作,只需让 /CS 保持低电平并继续发出 SCK 时钟信号,直到读取所需数量的数据字节为止。

 

CY15x102QN F-RAM 还支持与串行闪存兼容的快速读取功能。在快速读操作码 (0Bh) 和地址之后,SPI 主机发送一个伪字节来模拟闪存读取延时。接收到伪字节后,F-RAM 用所请求的数据作出响应。快速读取操作使用与标准读操作相同的机制,也能执行批量读操作。

 

写保护


除了 SPI 接口控制逻辑外,CY15x102QN F-RAM 还提供其他机制来识别器件并对 F-RAM 阵列进行写保护。

 

开发人员可以发出 SPI 操作码来访问 CY15x102QN 器件的只读唯一 ID 和器件 ID,获得制造商、存储器密度和零件版本等信息。开发人员还可以设置 8 字节读 / 写序列号寄存器,将 F-RAM 与特定系统或配置相关联。

 

关于 F-RAM 保护,该器件同时提供了软件和硬件机制。对于制造过程中的数据保护,有一个专用 256 字节特殊扇区可以在多达三个标准回流焊周期中保持数据完整性。对于正常工作期间的保护,器件使用写使能锁存器 (WEL) 来保护 F-RAM 阵列免于意外写入。上电时,WEL 默认清零,需要开发人员发出写使能 (WREN) 操作码 (06h) 才能执行写操作。

 

器件状态寄存器有一对块保护 (BP) 位 BP0 和 BP1,允许开发人员保护存储器的全部地址范围(BP1=1,BP0=1),或仅保护存储器的上半部分(BP1=1,BP0=0),或仅保护存储器的上部四分之一(BP1=0,BP0=1)。

 

开发人员可以使用硬件写保护引脚 (/WP) 来防止软件在正常工作期间修改 BP 位。为此,开发人员在状态寄存器中设置写保护使能 (

[1] [2]
关键字:非易失性存储器  ADAS  传感器 编辑:鲁迪 引用地址:http://news.eeworld.com.cn/qcdz/ic492466.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:特斯拉申请车队数据获取专利 以训练自动驾驶神经网络
下一篇:为何说汽车是带轮子的数据中心?如何确保车载网络的强大性能?

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

X-FAB在180nm BCD-on-SOI平台上新增非易失性存储器功能
基于公司成熟的SONOS技术,新增的Flash和EEPROM为汽车,医疗和工业领域带来了许多新的可能性 全球领先的模拟/混合信号和专业代工厂商X-FAB Silicon Foundries, 今天宣布在广泛使用的XT018 BCD-on-SOI平台上提供基于SONOS的Flash和嵌入式EEPROM。这些非易失性存储器(NVM)的添加将拓宽更多的应用范围,在这些应用中,需要高压额定值和高温承受能力,并且提升运算能力。 越来越多的应用需要基于微控制器(microcontroller-base)的解决方案,其中包括嵌入式Flash和EEPROM与高压(高达100V),高温和抗ESD / EMC能力相结合
发表于 2019-10-17
X-FAB在180nm BCD-on-SOI平台上新增非易失性存储器功能
富士通分享三大存储技术 各具独特堪称黑马技术
大数据、云计算、物联网的爆发让存储市场火爆异常,价格一涨再涨,从手机、电脑、汽车、到玩具,几乎所有电子产品等离不开存储器,而尤其可穿戴、医疗、工业设备更离不开高性能、高耐久性以及低功耗特性的关键数据存储。作为系统关键组成部分,存储性能至关重要。面对市场上参差不齐的存储器,选择的方向是什么?未来,存储技术的创新又该从哪些方面下手呢?在第七届EEVIA年度中国ICT媒体论坛暨2018产业和技术展望研讨会上,富士通电子元器件产品管理部总监冯逸新就富士通对非易失性存储器的策略以及创新方向为大家做了分享。“FRAM(铁电存储器)用于数据记录;NRAM(碳纳米管存储)用于数据记录和电码储存, 还可替代NOR Flash;ReRAM(电阻式
发表于 2018-05-06
富士通分享三大存储技术 各具独特堪称黑马技术
大数据、云计算、物联网的爆发让存储市场火爆异常,价格一涨再涨,从手机、电脑、汽车、到玩具,几乎所有电子产品等离不开存储器,而尤其可穿戴、医疗、工业设备更离不开高性能、高耐久性以及低功耗特性的关键数据存储。作为系统关键组成部分,存储性能至关重要。面对市场上参差不齐的存储器,选择的方向是什么?未来,存储技术的创新又该从哪些方面下手呢?在第七届EEVIA年度中国ICT媒体论坛暨2018产业和技术展望研讨会上,富士通电子元器件产品管理部总监冯逸新就富士通对非易失性存储器的策略以及创新方向为大家做了分享。“FRAM(铁电存储器)用于数据记录;NRAM(碳纳米管存储)用于数据记录和电码储存, 还可替代NOR Flash;ReRAM(电阻式
发表于 2018-05-05
面向纳电子时代的非易失性存储器
目前主流的基于浮栅闪存技术的非易失性存储器(NVM)技术有望成为未来几年的参考技术。但是,闪存本身固有的技术和物理局限性使其很难再缩小技术节点。在这种环境下,业界试图利用新材料和新概念发明一种更好的存储器技术,以替代闪存技术,更有效地缩小存储器,提高存储性能。这篇文章将分析新的主要的基于无机材料的非易失性存储器技术,如铁电存储器 (FeRAM)、磁阻存储器(MRAM)和相变存储器(PCM),以及主要的基于铁电或导电开关聚合物等有机材料的创新存储器概念。最后,我们重点探讨相变存储器技术,因为该技术最有可能成为下一代非易失性存储器技术,同时我们将分析相变存储器技术的主要特性和最新的发展状况。  前言 
发表于 2015-04-22
面向纳电子时代的非易失性存储器
非易失性存储器的可配置性
在嵌入式市场上,随着消费者要求新产品定期增加功能或提高应用灵活性,开发人员对修改系统应用功能的快捷性和简便性要求越来越高。从存储器角度看,这预示着可能需要用性能更高、合格检测更快的先进产品更换现有产品。新一代非易失性存储器应具备各种参数微调功能,能够缩减应用电路板的工程周期。 应用示例 1.应用灵活性 不同应用在不同的容性负载下需要不同的工作频率,这项要求与芯片组的性能以及电路板布局和复杂性紧密相关。例如,高频工作环境通常对电性能的优化要求严格,设计工程师需要考虑整个电路板上的电噪声,以降低线路的寄生电容。在这种情况下,降低存储器输出驱动器的强度更加受欢迎。此外,还必须根据工作频率优化指令执行速度。有时候,要想
发表于 2015-04-16
非易失性存储器的可配置性
首颗国产车规级AI芯片即将量产,BPU利用率可超90%
 3 月 8 日讯,国产汽车芯片突破,首款车规级 AI 芯片即将正式前装量产。 地平线公司在官方公众号发出文章:“中国芯,擎动智驾未来”。据悉,这次的主角是其车规级芯片“征程二代”。  “征程二代”在 2019 年 8 月正式发布。该芯片集成了地平线第二代 BPU 架构(伯努利架构),可提供 4 TOPS 的等效算力,典型功耗 2W,能够更高效灵活地实现多类 AI 任务处理,对多类目标进行实时检测和识别,可应用于自动驾驶视觉感知、众包高精地图与定位、视觉 ADAS 和智能人机交互等智能驾驶场景。更重要的是,地平线为用户提供了征程二代的完整工具链,帮助
发表于 2020-03-08
首颗国产车规级AI芯片即将量产,BPU利用率可超90%
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved