BMS算法设计之SOC估算方法(二)

2020-04-03来源: Electroauto 关键字:BMS算法设计  SOC估算方法  BMS

大家好!很高兴又跟大家见面啦,本篇文章是【BMS 算法设计】系列文章的第二篇。本期主要介绍的是电池SOC 估算方法中的第一种方法——直接估算法。我们一起来学习吧!


事实上,各种估算电池SOC 的试验方法,模型和算法已经被提出并且得到开发,每种方法都有他们各自的优缺点。下图是SOC 估算方法的总结,也是本系列文章陆续要讲到的算法(篮字为本期主要讲解的方法)。

几种典型的SOC估算方法:

在直接测量方法中,估算SOC 使用的是物理测量,比如电池的电压和阻抗。最常用的直接测量方法是:开路电压法、终端电压法、阻抗法和波谱法。


开路电压法(Open Circuit Voltage method- OCV)


OCV 是电池在空载条件下的热力学势,与电池的SOC 呈现出非线性的关系。OCV 通常是通过在特定环境温度和老化阶段的离线OCV 测试下获取的。尽管OCV 方法比较准确,但是它需要一段静置时间来估算SOC,因此很难在实际的应用中被直接使用(通常与其他算法融合使用)。OCV 在等效电路模型中以理想型可变电压源的形式出现,它的过电压由等效电路中剩余的电阻和电容原件增加。还有就是,电池之间的OCV-SOC 曲线关系也不一样,因此,SOC 估算算法直接使用这种变化的OCV-SOC 曲线数据可能会产生一个不可接受的错误的结果。传统的OCV-SOC 曲线是通过在每个SOC 阶段测量OCV 得到的,这种关系随着电池容量的改变而不同,而且即使是有相同结构和材料的电池,其结果也是不同的。但是,在每个SOC 上估计每个电池的OCV 来确定估算过程的有效性是一个十分耗时间的过程。

OCV 的迟滞性对SOC 的估算影响很大。迟滞性可以定义为OCV 充电和放电过程中的差异。因此,我们可以说,单纯的OCV 信息并不能充分地决定SOC,我们也要把历史的充放电数据考虑进去。


更多地,不同类型的锂离子电池电极其迟滞性也不同(以磷酸铁锂为活性物质的电极存在滞后现象)。为了准确地分析迟滞性对电池SOC 估算或者对等效电路参数的影响,应根据电池SOC 值或者容量来测量迟滞性的影响。OCV-SOC 函数可以通过分析表达或者查表的方式来实现,其中,分析方法有很多的优点,包括数据处理的效率。


终端电压法(Terminal Voltage method)


可以说,仅仅有一些研究可以表明可以使用锂离子电池的终端电压法来决定其SOC。这个方法是基于当电池由于内阻放电时,终端电压会下降,电动势与终端电压相等的事实来估算的。


阻抗法(Impedence method)


为了使用阻抗法来计算SOC,我们必须要同时记录不同激励频率下的电压和电流,因为电池的阻抗取决于频率。原则包括注入一定频率范围的电流来找到阻抗。当SOC 的值很高时阻抗的改变我们可以忽略不计,但是当SOC 到达一定低SOC 水平的时候,阻抗会迅速上升。在众多的方法中,EIS(Electrochemical Impedance Spectroscopy- 电化学阻抗谱)被当成是电池内部复杂的电化学过程的重要信息来源。尽管很多估算SOC的方法都是基于EIS, 但是直接使用EIS的复杂程度很高。作为一种方法,阻抗模型是根据EIS数据建立起来的,EIS 数据以奈奎斯特图的形式呈现,其中测量阻抗被绘制成实部和虚部。奈奎斯特图阻抗谱分为三部分:低频区、中频区和高频区。由于这种划分简化了参数的辨识,因此可以用基于ECM 模型的方法估算SOC。注:奈奎斯特图是用图解法表现系统频率特性的方法,将频率响应通过其幅频特性及相频特性表示在极坐标中的图形,称为幅相图,或奈奎斯特(Nyquist)图。以上就是本期对SOC 估算算法里的直接测量法的介绍,下期文章将继续为大家介绍其他估算算法(计数法)。我们下期再见啦!为了防止有的小伙伴没有看到第一篇文章,附上第一篇的原文链接:BMS算法设计之电池SOC介绍(一)如果有不同的看法欢迎扫描下方的二维码关注本公众号,我们期待着和大家一同交流。参考资料:知网、Energy期刊、相关书籍等



关键字:BMS算法设计  SOC估算方法  BMS 编辑:鲁迪 引用地址:http://news.eeworld.com.cn/qcdz/ic493328.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:BMS算法设计之电池SOC介绍(一)
下一篇:解析日产混合动力电池:分散投资,多头并进

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

BMS算法设计之电池SOH介绍(下)
本期咱们继续来聊聊电池包SOH的算法实现,本次主要聊一聊用电化学阻抗谱法,基于模型的估算和机械疲劳的理论方法来实现SOH的估算。上一篇文章没有看到的朋友不用着急,文章中会有上一篇的链接。趁着周末的大好时光,一起来学习下吧!阻抗谱法电池模型参数化的一个已知的模型是电化学阻抗谱(Electrochemical Impedance Spectroscopy- EIS)。此模型的主要优势就是可以利用动态的电流来进行估算,利用电流流动时的SOC的变化。EIS 一般用于SOC的估算,但也会用来作为SOH的学术研究。研究了温度、放电深度(DOD)和循环次数对锂离子电池放电容量的影响。日历寿命和循环寿命都已经考虑在内,并且都进行了测试,结果表明:随
发表于 2020-05-21
<font color='red'>BMS</font>算法设计之电池SOH介绍(下)
BMS算法设计之电池SOH介绍(上)
无论是读万卷书,还是行万里路,都源于点点滴滴的积累。祝愿大家五一劳动节快乐!大家好,不知不觉,2020就过去大半了,真的是光阴似箭啊!本期跟大家聊一聊电池包的SOH,一起来学习交流吧!介绍电池包的SOH定义为电池健康状态的定量指标,并根据电池的寿命终止来确定。但是,并不是所有的业界专家都接受电池的寿命终止这种单一的定义。因此,在业界也有不同的定义,比如:“日历寿命”——用月或者年来表示电池的寿命。所以,电池的终止寿命也被认为是基于时间周期。然而,我们也知道,电池的寿命也受不同的使用场景的影响。所以,另外一种电池寿命的定义也随即提出——“循环寿命”。在第二种定义中,电池包的寿命通过电池包充放电模式的使用表示。此时,电池包的寿命计算是基
发表于 2020-05-21
<font color='red'>BMS</font><font color='red'>算法</font><font color='red'>设计</font>之电池SOH介绍(上)
BMS算法设计之电池SOC介绍(一)
大家好!今天给大家带来的是【BMS 算法设计】系列文章的第一篇。本期主要介绍的是电池SOC的基本常识,后续会给大家介绍各种SOC的估算方法及其优劣势的对比,让我们一起来学习吧!电池的SOC通常被定义为当前的容量Q(t)和其标称容量的Qn比率,这也是表明电池中可以存储的最大的电量。公式如下:SOC(t)=Q(t)/Qn精确的SOC 估算能够反映一些重要的信息,比如电池的性能、电池的剩余寿命等,这些信息最终都会导致对电池的功率和能量的有效管理和利用。此外,SOC估算可以用来调节由于电池的过放和过冲而导致电池的寿命降低、爆炸或者起火,加速老化和电池电芯结构的永久性破坏。因此,准确的SOC指示对于用户的便捷性和确保电池的效率、安全性和寿命
发表于 2020-04-03
<font color='red'>BMS</font><font color='red'>算法</font><font color='red'>设计</font>之电池SOC介绍(一)
大模组层面处理电芯热失控
防爆阀。在防爆阀的内侧增加了一层薄薄的钢片,避免高温烟气直接冲击。高温烟气通过排气道,到达排气阀通过防护钢片的阻挡,一定程度上能控制实际排出的气体温度。  图 2 多个防爆阀  3)电芯热失控的特殊散热利用 BMS 电池管理系统实时监控,当监测到热失控有可能将会发生时,将电池的水泵将开启全速运转。配合导热材料,能够迅速将热失控电芯附近局部过多的热量转移到电池包其他位置,能够有效带走一部分热量。  02如何处理 NCM811 实际上,对于 523 和对付 811,处理方法是相似的,但是这个难度就很大,之前小渔锂电对比 150Ah 和 234Ah 在针刺条件下的反应
发表于 2020-07-06
大模组层面处理电芯热失控
大模组层面处理电芯热失控
防爆阀。在防爆阀的内侧增加了一层薄薄的钢片,避免高温烟气直接冲击。高温烟气通过排气道,到达排气阀通过防护钢片的阻挡,一定程度上能控制实际排出的气体温度。  图 2 多个防爆阀  3)电芯热失控的特殊散热利用 BMS 电池管理系统实时监控,当监测到热失控有可能将会发生时,将电池的水泵将开启全速运转。配合导热材料,能够迅速将热失控电芯附近局部过多的热量转移到电池包其他位置,能够有效带走一部分热量。 02  如何处理 NCM811 实际上,对于 523 和对付 811,处理方法是相似的,但是这个难度就很大,之前小渔锂电对比 150Ah 和 234Ah 在针刺条件下的反应
发表于 2020-07-05
大模组层面处理电芯热失控
Batman和Robin---特斯拉MODEL 3 BMS的采样芯片
把 MODEL 3 采集板的电路简要分析完,后面就开始分析它的主控板了。 采集板上最吸引人分析的就是它的 AFE,我们直接从它开始。上图可见,这个板上一共有 4 个 AFE,其中两个是相同型号,放大后如下图: 其中一个为 64PIN 的贴片封装,从丝印上看不是一个我们熟悉型号的 AFE,而且有独特的 LOGO,从已知资料来看,它被称作 batman。 同时,单板上也有相同的丝印,看起来有点像蝙蝠侠哦。  这里插一句话,有人讲 batman 其实是 ADI 的 LTC6813,其实不是的,下图为 LTC6813 的引脚定义,其中 47、48、49 脚分别为 GPIOVREGD
发表于 2020-06-16
Batman和Robin---特斯拉MODEL 3 <font color='red'>BMS</font>的采样芯片
换一换 更多 相关热搜器件
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved