datasheet

基于VxWorks的电力系统故障录波器设计

2016-10-09来源: eechina关键字:VxWorks  电力系统  故障录波器
  电力系统故障录波器是研究现代电网的基础,也是评价继电保护动作行为及分析设备故障性质和原因的重要依据。在传统变电站中,录波所采用的方法是将需要采样的各个节点通过硬电缆集中的连接到专用的采集板上,采集板对电流电压值以及开关量进行A/D转换,再由后台的录波设备进行分析与存储。
  当前,变电站的发展正处于传统变电站向数字化变电站的过渡阶段,甚至有的变电站运行于传统站与数字站的混和状态。对于录波器制造公司来说,由于传统站和数字站同时有录波需求,需要同时有可用于传统站和数字站的两种设备,如果单独设计两种独立的录波器,将大大增加产品设计、生产和维护成本。兼容传统站与数字站的录波器正是为了满足这一需求而设计。
  1 总体结构
  1.1 变电站的结构
  数字化变电站在物理结构上分为两类,即智能化的一次设备和网络化的二次设备;而在逻辑结构上可分为3个层次,根据IEC61850协议定义,分别为过程层、间隔层、站控层(或变电站层)。各层内部及各层之间采用高速网络通信,整个系统的通信网络可以分为:站控层和间隔层之间的间隔层通信网、以及间隔层和过程层之间的过程层通信网。间隔层在站内按间隔分布式布置,各间隔设备之间相对独立;间隔层和过程层之间的网络采用单点向多点的单向传输光纤以太网,在标准中称为过程总线。如图1所示。
  


  1.2 故障录波器系统构成
  数字化故障录波器使用分层的系统设计,包括前端的协议转换器部分以及后端的故障判断与录波设备两部分。协议转换器采用PowerPC8 270处理器结构和VxWorks操作系统,其中包括IEC61850协议处理模块、数据同步模块、传统站数据模块、数据通信模块和时间同步模块。如图2所示。
  


  IEC61850模块负责接收和解析模拟合并单元发送的IEC61850 9-1报文,提取模拟采样值数据;以及接收和解析保护控制单元发送的面向通用对象的变电站事件(GOOSE)报文,提取开关量数据。数据同步模块根据同步采样合并策略,实现开关量数据和采样值数据的同步。数据通信模块负责与故障判断与录波设备进行数据交互。时间同步模块则负责IEEE1588校时协议的处理和同步本地时钟。
  2 VxWorks下的IEC61850报文的接收实现
  2.1 IEC61850 9-1与GOOSE报文的传输
  IEC61850标准针对变电站所有功能定义了比较详尽的逻辑节点和数据对象,并提供了完整的描述数据对象模型的方法和面向对象的服务,其中的9-1协议和GOOSE协议都采用了不经TCP/IP协议,直接映射到数据链路层,即传输层和网络层均空的方式。以避免通信堆栈造成传输延迟,从而保证报文传输、处理的快速性。
  2.2 VxWorks下对于网络协议的处理流程
  在VxWorks下处理数据链路层的报文,需要关注它的网络协议栈结构。VxWorks网络协议栈(scalable enhanced network stack,SENS)为可裁减增强网络协议栈。它与传统的TCP/IP网络协议栈相比,最大的特点是在数据链路层和网络协议层之间多了MUX层。当网络接口驱动向协议层发送数据时,驱动程序会调用一个MUX层提供的函数将数据转发给协议层。MUX的主要目的是把网络接口驱动层和协议层分开,使得二者彼此保持独立。在此,为了实现对9-1和GOOSE协议数据链路层报文的处理,利用了VxWorks网络协议栈的MUX接口,如图3所示。
  


  当网卡收到一个报文时,网卡驱动中实现的网卡中断服务函数将被调用。中断服务只负责最简单的底层操作,然后中断调用netJobAdd(),将接下来的工作排队加入网络服务队列,tNetTask任务将会从此队列中读出,完成任务级别的网络处理工作。其具体的处理方法根据不同的网络协议类型有所不同,开发人员可以通过MUX接口绑定对新的网络协议处理方法。
  2.3 IEEE1588精密时钟同步协议
  为了在后方的故障录波和常态录波下都能有精确的时间,采用IEEE1588精密时钟同步协议(PTP)。它是一种网络时间同步协议。
  IEEE1588协议通过硬件和软件配合获得更精确的定时同步。它采用分层的主-从式(master-slave)模式,主要定义了4种时钟报文类型:同步报文(Sync)、跟随报文(Fellow-up)、延时要求报文(Delay-Req)、回应报文(Delay-Resp)。PTP系统中的从时钟就是通过与主时钟交换上述的4种报文来同步时间。
  3 硬件设计
  前端故障录波器协议转换器部分的硬件选择Freescale MPC8270处理器,其CPU主频为450 MHz,通信处理器(CPM)主频300 MHz,并且其自身具有3个快速以太网控制器(FCC)。在该本应用中使用了交换芯片进行扩展。后端的故障判断与录波设备采用IntelCore 2双核E4300 1.8 GHz。
  


  4 软件设计
  软件基于VxWorks操作系统,VxWorks具有良好的可靠性,高性能的内核以及很好的实时性。
  4.1 IEC61850报文处理模块
  IEC61850 9-1标准与GOOSE为了保证通信的实时性,都采用了数据链路层直接传输报文。在此利用VxWorks的MUX层接口实现从数据链路层将IEC61850协议数据传输给应用层程序。由于在IEC61850协议中规定帧结构中含有虚拟局域网标记TPID和TCI,在帧经过交换机时可能会被去掉也可能保留。因而在MUX层绑定网络协议类型处理函数时需要对9-1协议(ethertype 0x88b8),GOOSE协议(ethertype 0x88ba),以及虚拟局域网标记(0x8100)都进行绑定,并在后续的处理中对类型为0x8100的报文特别处理,判断其真实的协议类型,以免误判。
  9-1是一个点对点的协议。在故障录波器的应用场景中,由于必须监控全站的大量线路,前端需要集中器将9-1数据合并,而合并后的数据格式目前并没有统一的标准。在此对于9-1协议解析进行了模块化设计,将报文的解析独立出来,使其很容易增加对其他类型9-1扩展协议的支持。
                                
                  4.2 传统数据报文模块
  该应用中对于传统站,将由前方的采集设备采样模拟量和开关量数据,通过TCP协议发送到录波器。录波器将对其解析后封装为与IEC61 850相兼容的数据格式,以便后方设备进行启动判断与存储。
  4.3 同步模块
  9-1数据来自合并单元,而开关量采样数据来自保护控制单元,两者的数据源不同,发送的报文格式也不同。IEC-61850中定义的GOOSE报文,每帧报文中含有详细的绝对时间,但报文只有在开关量发生变位时才发送,在开关量变位后,则建议按指数递增的时间间隔发送,因而接受到GOOSE报文的时刻是不定的。在某些实际应用中,甚至可能发生保护装置未进行同步,造成GOOSE报文中的时间戳不准的情况。另一方面,故障录波需要全站的大量开关量数据,而单一保护控制单元发送的GOOSE报文只包含其中的一部分,需要将不同来源的GOOSE报文进行同步和组合。包含模拟量采样值的9-1报文通过合并单元后虽然具有录波所需要的全部模拟采样值数据,也按照固定的采样频率均匀发送,但其中仅含有秒的等分序号,而没有绝对的时间信息。因此必须要将不同源的开关量之间、以及开关量和模拟量之间进行同步合并,对数据整体加入绝对时刻。在设计同步方案时,充分考虑到开关量的数据更新频率远远小于开关量数据读取频率,即绝大多数的同步工作都是将保存的开关量与当前收到的模拟量采样值进行合并,只在低频率的GOOSE报文来临时才需要更新保存的开关量值。在该设计中,高频率的模拟量数据到需要和开关量合并时,保存开关量的堆栈中将只含有最近的一次或之前少数几次开关量状态,模拟量数据将以极大的概率直接与最近的开关量时间匹配,维护此堆栈的空间开销和时间开销都很小。具体流程图如图5所示。
  


  4.4 数据通信模块设计
  该模块将同步好的全站模拟量采样值与开关量加入时间戳,通过TCP连接发送给启动判断与存储设备,保证数据及时间的正确性并简化后端的实现。
  4.5 时间同步模块
  按照IEEE1588的规定,首先由主时钟节点向从时钟节点发送带主时钟时间戳的同步报文(Sync),同时主时钟节点记录下同步报文实际发送的时间戳,并在随后的跟进报文(Fellow-up)中传送该精确时间戳t0。从时钟节点在收到上述报文后记下同步报文的接收时刻t1。然后从时钟节点向主时钟节点发送一个延迟请求报文(delay-request),同时记录下该报文的实际发送时间作为精确的发送时间戳t2,而主时钟接收到该报文时也记下接收时刻的精确时间戳t3,并将该事件戳在随后的延迟响应报文。中发送给从时钟节点。如图6所示。
  


  


  主、从时钟偏差(offset)以及网络延迟(delay)可表示为:
  


  4.6 故障录波启动判断及记录模块
  因协议转换器已对数据加入时间戳并进行合并,故障录波启动判断及记录模块存在实时性的问题,设计时注重更大的系统容量,因此硬件平台选择Intel CPU,软件基于Linux操作系统。它通过额外的算法判断同步的模拟量采样数据与开关量数据的瞬时值或有效值来判断当前电网中是否发生故障,需要高速存储并生成故障报告。同时可在正常状态下存储常态录波。
  5 结语
  新型故障录波器采用两层设计,对传统站与数字站进行了统一的封装,使得单一型号的录波器产品可以满足传统站,数字站以及传统数字混合站的要求,解决了当前过渡时期的多种要求,大大降低了录波设备的开发、生产和维护成本。同时,它同时支持大容量,高采样率的暂态故障录波需求和常态录波。在96路模拟量,192路开关量的容量下,对于传统站可以支持达到10 kHz的采样率,对于数字站可以支持4.8 kHz的采样率。它是一种高性能,实用性良好的新型故障录波器。

关键字:VxWorks  电力系统  故障录波器

编辑:什么鱼 引用地址:http://news.eeworld.com.cn/qrs/article_2016100930877.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:基于SoC FPGA进行工业设计及电机控制
下一篇:基于DSP的谐波控制器的系统研制

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

Astranis将VxWorks®实时操作系统用于其新一代卫星

领先的关键基础设施物联网软件提供商风河®宣布,卫星新创公司Astranis Space Technologies正在将VxWorks®实时操作系统用于其新一代卫星,为网络尚未覆盖的市场提供经济高效的高速互联网接入服务。 全世界尚有一半以上的区域尚未接入互联网,卫星有望在解决这一问题中发挥重要作用。Astranis公司正在建造能够向全球个人用户提供宽带互联网服务的卫星。其覆盖目标是那些由于基础设施建设成本太高而导致宽带互联网无法广泛使用或完全不可用的地域。 Astranis公司采用VxWorks来管理卫星主飞行计算机,控制其中搭载的航空电子设备,以便实施引导并使其与地球保持互连通信。Astranis公司最近已经
发表于 2019-04-01
Astranis将VxWorks®实时操作系统用于其新一代卫星

索格亚采用风河VxWorks开发的机载显示控制器取得取得CTSOA

领先的关键基础设施物联网软件提供商风河公司宣布,西安索格亚航空科技有限公司采用风河VxWorks 7实时操作系统(RTOS)研制开发的机载多功能显示控制器取得了中国民航颁发的技术标准规定项目批准书(CTSOA)。 机载多功能显示控制器是飞机航电系统的核心设备,将各类机载电子设备的显示信息都呈现在多功能显示器上,并且可以实现高度集成的显示和控制,改变了以往飞机座舱中仪器仪表繁多的复杂状况。西安索格亚航空科技有限公司开发的机载多功能显示控制器基于VxWorks实时操作系统,实现了电子飞行仪表、GPS/北斗定位、移动电子地图导航、飞行管理、北斗短报文通信和北斗授时功能,可满足各类中型及小型飞机仪表显示和飞行管理需求。CTSOA
发表于 2019-01-15

风河VxWorks 产品继续为恩智浦平台加力

DO-178C、EUROCAE ED-12C、EN 50128和IEC 61508的严格安全认证的要求。● VxWorks 653多核版(VxWorks 653 Multi-core Edition)是一个集成模块化航空电子设备(IMA)平台,可以在共享的计算机平台上实现较高安全关键和较低安全关键应用的工作负载整合,现已针对NXP QorIQ T2080进行过验证,并且提供COTS认证依据。● VxWorks 7 Cert是一个安全关键应用平台,在航空电子、交通运输、工业自动化和医疗等行业需获得RTCA DO-178、EUROCAE ED-12或IEC 61508认证。现已针对NXP i.MX
发表于 2018-12-18

vxWorks内核解读四--中断

IVector=INumber*8INUM_TO_IVEC(intNum):实现内部中断号与内部向量号之间的转换。外部中断号、内部中断号、以及中断向量号的对应关系如表4.1所示。表4.1 中断相关概念对照表X86架构的计算机中,一些中断资源已经固定地分配给某些外部设备,如系统时钟固定使用IRQ0,所以在选择中断号时首先应参考硬件手册,避免与已用的中断资源冲突。选定中断号后,需要在BIOS中加以设置。避免BIOS在初始化时,把此中断号作为可用资源分配给PCI设备,造成中断冲突。备注:VxWorks中使用intConnect()挂接中断服务程序,但对于PCI设备,一般采用pciIntConnect()挂接中断,它与intConnect()的主要
发表于 2018-12-01
vxWorks内核解读四--中断

风河VxWorks助力NASA洞察号探测器完成火星之旅

风河引以自豪地宣布,VxWorks实时操作系统(RTOS)助力NASA洞察号探测器(InSight Lander)完成火星之旅重要里程碑,开始向红色星球减速12300mph并已成功着陆。风河VxWorks被应用于洞察号探测器的航空电子系统,助力NASA完成了此项任务,这是继2012年火星科学实验室好奇号任务之后,风河RTOS系统再次登陆火星。着陆后,洞察号将钻入火星表面,在2020年11月24日之前,它都将留在火星执行科学任务并收集有关这颗星球如何形成的数据信息(相当于火星上的一年零40天,或接近两个地球年)。 二十多年来,风河助力NASA将数十个无人驾驶系统带入太空,在一些重大的太空任务中发挥了关键作用,为我们开启探索
发表于 2018-11-27
风河VxWorks助力NASA洞察号探测器完成火星之旅

VxWorks共享看门狗定时器的设计与实现

    VxWorks是目前应用最多的嵌入式实时操作系统之一,广泛应用于工业控制、医疗器械、通信、航空航天以及武器装备等领域。VxWorks是32位实时嵌入式操作系统,自20世纪80年代由风河公司推出以来,其良好的实时性、对多任务的支持、体积精简、可剪裁等优点得到众多公司、开发者及用户的喜爱。    在实时性要求高的应用系统中,定时器是经常被用到的重要器件。而对于VxWorks操作系统本身来说,并未提供一个通用、高效的定时器组件。文章所提出的共享看门狗定时机制就是针对这种情况实现的一种通用型定时器组件。     1 VxWorks定时的方法 
发表于 2018-03-04
VxWorks共享看门狗定时器的设计与实现

小广播

何立民专栏

单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved