涨姿势!常用的USB Type-C功率传输数据线也需要芯片级保护

最新更新时间:2022-09-30来源: EEWORLD作者: ADI模拟和电源管理专家Nazzareno (Reno) Rossetti和ADI工业和医疗健康事业关键字:USB  Type-C  数据线  芯片级  ADI 手机看文章 扫描二维码
随时随地手机看文章

新的USB Type-C® (USB-C)电缆和连接器规范极大地简化了数据互连,以及为数码相机、超薄平板电脑等电子产品供电的方式(如图1)。该规范支持高达15W的USB-C充电应用,而USB-C功率传输(PD)将充电能力扩展至100W,包括各种可互换充电的设备。不过,USB Type-C在系统保护方面也带来了新的挑战。


这类接口正反面一致的连接器在引脚间距上较USB Micro-B小,无形中增加了VBUS发生机械短路的风险。另外,由于USB PD具有高电压,需要更强大的保护。随着电子负载越来越复杂,也需要加强ESD(静电释放)和电压浪涌保护。面对USB Type-C PD架构以及与D+/D-数据信号保护相关挑战,ADI提出了一种高度集成的2 x SPDT开关,只需较少的BOM和PCB占用空间,就能够攻克上述挑战。

 

image.png

图1.数码相机通过USB-C电缆连接到平板电脑


USB-C PD系统


图2显示了一个典型的便携式电源管理设备前端,该设备可连接到USB-C电缆,并且由锂离子(Li+)电池供电。 

 image.png

图2.USB PD电源管理系统


当存在VBUS时,它为充电器、系统和其余模块供电,同时对电池充电。当VBUS断开时,电池为系统供电。使用USB-C电缆时,CC1和CC2引脚决定端口连接、电缆方向、角色(role)检测和端口控制。D+/D-线是标准的USB-C通信线,以480Mbps的速度处理数据,并受到D+/D-保护装置的保护。PD控制器实现供电协议。 


保护挑战


电源中出现电涌和静电放电(ESD)很常见,可能会干扰或导致电子负载和设备损坏。ESD是由于静电荷从人体转移到电子电路引起的,这是手持电子设备面临的一个大问题。浪涌可能是由闪电引起的,也可能是在靠近雷击的地方铺设的长电缆中引起的。开关或继电器会在开启和关闭操作期间引起浪涌。负载突降是通过切断汽车上的电池连接而产生的浪涌。良好的数据线保护IC应能提供足够的保护,而不会显著降低数据质量。


集成解决方案


以ADI MAX20334为例,它是一款2 x SPDT开关,具有过压保护功能,适用于便携式设备(图3)。该IC旨在保护下游数据线免受高压短路、ESD或浪涌事件的影响。


该设备具有便携式电子设备中高性能开关应用所需的低导通电容和低导通电阻,支持内部正过压和浪涌保护功能,可处理USB低/全/高速信号,并采用2.7V至5.5V电源供电。同时,该IC采用12引脚(1.23mm x 1.63mm)晶圆级封装(WLP),可在-40°C至+85°C扩展温度范围内工作。

 

image.png

图3.具有扩展保护的2 x SPDT开关


扩展保护 


所有引脚均采用了ESD保护结构,以防止在处理和组装过程中遭受高达±2kV(人体模型)的静电放电。COMA和COMB(图2和图3)进一步受到高达±15kV(人体模型)、±15kV(IEC 61000-4-2中描述的气隙放电方法)和±8kV(IEC61000-4-2中描述的接触放电方法)的ESD保护,且不会造成损坏。ESD结构在正常运行和设备断电时均可承受高ESD。即便在ESD事件之后,此IC也会继续工作,而不会发生闩锁。经测试,该IC可受到-30V至+45V (IEC61000-4-5)的浪涌保护和高达+20.5V的过压保护。


图4将这种高度集成的扩展保护解决方案PCB布局与提供纯正电涌保护及较低OV和ESD保护的典型竞争产品进行了比较。后者需要额外的电路来满足ESD/浪涌/OV规范要求,增加了BOM成本,并且PCB占用空间增加了5倍。

 

image.png

图4.扩展保护优势


数据完整性


从图5的眼图可明显看出,弯曲的蓝线与禁止的红色禁区保持接近最大(close-to-maximum)的距离,数据信号具有良好的完整性。保护IC的高带宽使信号升降时间和抖动的下降幅度最小,从而产生良好的误差容限,这对于通过USB一致性测试很重要。

 

image.png

图5.D+/D-眼图


结论


尽管USB Type-C在数码相机和超薄平板电脑等电子产品的互连、供电和保护方面带来了诸多新挑战。但基于ADI的设计解决方案可提供高达±15kV ESD保护、-30V至+45V浪涌保护和+20.5V过压保护的增强型保护装置,并可单独保护数据线,与集成度较低的装置相比,能够以更低的BOM和更小的PCB占用空间来满足ESD/Surge/OV规范要求。


关键字:USB  Type-C  数据线  芯片级  ADI 编辑:张工 引用地址:涨姿势!常用的USB Type-C功率传输数据线也需要芯片级保护

上一篇:CANopen转modbus的实现方式有哪些
下一篇:最后一页

推荐阅读

e络盟与Analog Devices签署全球分销协议
e络盟与Analog Devices签署全球分销协议e络盟现可快速交付Analog Devices混合信号和电源管理系列产品中国上海,2022年11月25日 – 安富利旗下全球电子元器件产品与解决方案分销商e络盟与Analog Devices, Inc.签署全新分销协议,进一步扩充其半导体产品阵容。通过这项协议,e络盟可为设计工程师快速供货Analog Devices系列产品,包括上市新品,以助力他们开发航空航天与国防、汽车、通信、消费电子、数据中心、能源、工业自动化、仪器仪表及数字医疗保健领域的创新解决方案。Analog Devices高性能模拟、混合信号和数字信号处理系列集成电路产品种类丰富,适用于5G、物联网、网络安全、雷达系
发表于 2022-11-25
e络盟与Analog Devices签署全球分销协议
如何为宽带的精密信号链设计可编程增益仪表放大器
如何为宽带的精密信号链设计可编程增益仪表放大器精密数据采集子系统通常由高性能的分立式线性信号链模块组成,用于测量和保护、调节和获取,或者合成和驱动。硬件设计人员在开发这些数据采集信号链时,一般需要高输入阻抗,以直接连接多种传感器。在这种情况下,通常需要利用可编程增益使电路适应不同的输入信号幅度——单极性或双极性和单端或差分信号,具有可变共模电压。大多数PGIA传统上由单端输出组成,该输出不能直接全速驱动基于全差分、高精度SAR架构的ADC,需要至少一个信号调理或驱动级放大器。随着人们越来越注重通过系统软件和应用来提供与众不同的系统解决方案,整个行业不断迅速发展变化。但是,受紧张的研发预算和上市时间限制,用于构建模拟电路并制作原型来验
发表于 2022-11-25
如何为宽带的精密信号链设计可编程增益仪表放大器
如何在大带宽应用中使用零漂移放大器
零漂移运算放大器使用斩波、自稳零或这两种技术的结合来消除不需要的低频误差源,例如失调和1/f噪声。传统上,此类放大器仅用于低带宽应用中,因为这些技术在较高频率时会产生伪像。只要系统设计时考虑了高频误差,例如纹波、毛刺和交调失真(IMD)等,较宽带宽的解决方案也可以受益于零漂移运算放大器的出色直流性能。零漂移技术1、斩波背景第一种零漂移技术是斩波,它将误差调制到较高频率,从而将失调和低频噪声与信号内容分离。图1显示了(b)斩波如何将输入信号(蓝色波形)调制到方波,在放大器中处理该信号,然后(c)将输出端信号解调回直流。与此同时,放大器中的低频误差(红色波形)在(c)输出端被调制到方波,然后(d)通过低通滤波器(LPF)滤波。图1.在(
发表于 2022-11-24
如何在大带宽应用中使用零漂移放大器
多模式生命体征监测前端助力破局可穿戴电子产品“内卷”困境
从数据准确性和算法有效性入手,多模式生命体征监测前端助力破局可穿戴电子产品“内卷”困境继智能手机后,近年来可穿戴设备正“包揽”全身,逐步成为消费者新时尚:耳戴TWS耳机,腕戴智能手环/智能手表,头戴智能眼镜/智能头显,身穿心电T恤……多种多样的智能穿戴设备正成为继手机后撬动着消费电子市场增长的新亮点。但看似百花齐放的繁荣表象背后,可穿戴设备发展却暗藏隐忧——应用场景单一、功能更新缓慢、同质化严重、入局者众多……ADI中国产品事业部高级市场应用经理何源“贝索斯曾经说过,很多人关注并追求未来十年会变化的东西,但是他问自己更多的是未来十年什么是不会变的。从可穿戴产品来看,人类对于健康的追求是不变的,健康消费一定是大趋势。”在前不久的第10
发表于 2022-11-24
多模式生命体征监测前端助力破局可穿戴电子产品“内卷”困境
基于热敏电阻的温度检测系统(下篇):系统优化与评估
简介正如本系列文章上篇所讨论的,设计和优化基于热敏电阻的应用解决方案涉及到不同挑战。这些挑战包括上篇文中讨论过的传感器选择和电路配置。其他挑战有测量优化——包括ADC配置和选择外部元件,同时确保ADC在规格范围内运行以及系统优化,从而实现目标性能并确定与ADC和整个系统相关的误差源。热敏电阻系统优化通过热敏电阻配置器和误差预算 计算器等易于使用的工具,客户可以轻松配置系统中的热敏电阻,包括接线和连接图。该工具以比率式配置设计具有激励电压的热敏电阻系统。它还允许客户调整传感器类型、被测温度范围、线性化和外部元件等设置,如图1所示。它确保ADC和热敏电阻传感器均在规格范围内使用。因此,如果客户选择了不受支持的选项,该工具会标记这是一个错
发表于 2022-11-23
基于热敏电阻的温度检测系统(下篇):系统优化与评估
基于热敏电阻的温度检测系统(上篇):设计挑战和电路配置
简介本系列文章分为上下两篇。上篇首先讨论基于热敏电阻的温度测量系统的历史和设计挑战,以及它与基于电阻温度检测器(RTD)的温度测量系统的比较。文中还会简要介绍热敏电阻选择、配置权衡,以及Σ-Δ型模数转换器(ADC)在该应用领域中的重要作用。下篇将详细介绍如何优化和评估基于热敏电阻的最终测量系统。热敏电阻与RTD正如文章“如何选择并设计理想RTD温度检测系统”中所讨论的,RTD是一种电阻值随温度变化的电阻器。热敏电阻的工作方式与RTD类似。RTD仅有正温度系数,热敏电阻则不同,既可以有正温度系数,也可以有负温度系数。负温度系数(NTC)热敏电阻的阻值会随着温度升高而减小,而正温度系数(PTC)热敏电阻的阻值会随着温度升高而增大。图1显
发表于 2022-11-23
基于热敏电阻的温度检测系统(上篇):设计挑战和电路配置
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2022 EEWORLD.com.cn, Inc. All rights reserved