对于一个特定的永磁电机驱动系统,其最大转速受反电动势的制约,转速越高需要越高的调制电压去平衡。因此,永磁电机需要充分利用DC侧的电压,以提高电机的转速性能。
关于电压利用率电机工程师和电控工程师的理解往往是不太一样的!
本文基于双极性PWM调制,Y型接法,讨论了各种调制电压的关系,希望做电机的小伙伴能够和做控制器的小伙伴达成共识。
1、对于电机线电压,在调制过程中两线之间电压有三种电压状态,+DC,0,-DC,线电压的最大调制出正弦电压的峰值为Udc,转化为相电压为Udc/sqrt(3)
2、在Y型接法的定子线圈中,线圈电压为2/3Udc, 1/3Udc, -1/3Udc, -2/3Udc, 中性点电压(参考DC侧GND)为1/3Udc,2/3Udc跳变,因此最大调制电压的峰值为2/3Udc

逆变器开关六状态
3、通过下面矢量图可以看出,内接圆是能够调制出正弦电压的最大圆,半径为sqrt(3)/2 *2/3Udc =Udc/sqrt(3) 和电机端相电压相等
4、超过该最大电压利用率,调制轨迹会在沿着六边形运动,形成“过调制”,此时基波电压增加,同时高次谐波分量增加。
5、控制器能够控制的最大电压边界为正六边形的边界,相电压基波电压为2/3Udc, 进入方波控制。

电压调制度
结论:电机端电压利用率为1等于相电压调制最大内接圆,相电压为Udc/sqrt(3);如果以最大调制电压为1/2Udc SPWM调制方式为基准,那么电压为2/ sqrt(3) * 1/2Udc, 也即是获得1.15倍SPWM最大调制电压。
关键字:SVPWM
编辑:什么鱼 引用地址:如何理解SVPWM调制过程中的电压利用率?
推荐阅读
如何理解SVPWM调制过程中的电压利用率?
对于一个特定的永磁电机驱动系统,其最大转速受反电动势的制约,转速越高需要越高的调制电压去平衡。因此,永磁电机需要充分利用DC侧的电压,以提高电机的转速性能。 关于电压利用率电机工程师和电控工程师的理解往往是不太一样的! 本文基于双极性PWM调制,Y型接法,讨论了各种调制电压的关系,希望做电机的小伙伴能够和做控制器的小伙伴达成共识。 1、对于电机线电压,在调制过程中两线之间电压有三种电压状态,+DC,0,-DC,线电压的最大调制出正弦电压的峰值为Udc,转化为相电压为Udc/sqrt(3) 2、在Y型接法的定子线圈中,线圈电压为2/3Udc, 1/3Udc, -1/3Udc, -2/3Udc, 中性点电压(参考DC侧GND
发表于 2023-03-31
一种变频调速系统的SVPWM控制设计
引言 目前,变频调速技术经过多年的研究已经趋于成熟,尤其是普通的SPWM方案已经普遍应用于实际的变频器中。其他控制方法如空间电压矢量法、直接转矩控制等策略的研究也已经进入了一个新的阶段。空间电压矢量PWM(Space Vector PWM,SVPWM)控制方法通过电压矢量的控制优化使磁通逼近基准磁链圆,从而产生恒定的电磁转矩,其控制效果等同于直接转矩控制。从电机的角度出发,把逆变器和电动机作为一个整体来考虑。与传统PWM相比,其电流畸变小、直流电压利用率高,在传动系统和变频电源装置中有着广泛应用。 1 变频调速系统结构 图1为整个变频调速系统的结构框图。系统由整流电路、滤波电路、智能功率模块(IPM)、单片机(SPMC75F2313
发表于 2016-12-28
基于svpwm变频调速的双电机控制算法应用
1.引言
随着工业技术的发展,在航空、军事、机械制造领域等需要多个电机同时驱动一个或多个工作部件进行协调控制的场合越来越多。传统的控制系统多采用单一电机实现单轴控制,电机的输出转矩有一定的限制,当传动系统需要较大的驱动功率时,必须特制功率与之相匹配的驱动电机和驱动器,使得系统的成本上升,而且过大的输出功率的电机受到制造工艺和电机性能的影响,大功率的驱动器的研制也会受到 半导体 功率器件的限制[1].电机在实时跟随同一目标转速的同时。还需要保持两电机问的转速同步,否则便会导致后面的机械传动精度下降。针对以上问题解决方法是采用多个电机对其进行控制,但是多电机之间同步的好坏直接影响到生产效率和产品质量,因此多电机同步控制的研究
发表于 2016-10-09
基于分类算法的双三相感应电机SVPWM
传统的SVPWM算法,因其涉及较多的扇区判断、三角函数计算和平方根运算,其算法较为复杂。在此首先分析了基于分类算法的SVPWM的基本原理及其在计算效率上的优势。针对双三相感应电机控制的特点,提出基于分类算法的六相逆变器SVPWM控制算法,并进行了实验验证。实验结果验证了该控制算法的有效性。
1 引言
多相感应电机交流调速系统具有可靠性高、转矩脉动小、同等电压下功率更大等优点,是大功率交流变频调速的发展方向之一。双三相感应电机控制系统为其典型代表。传统的双三相感应电机SVPWM算法,因涉及较多的扇区判断、三角函数计算和平方根运算,其计算与实现较为复杂。为此,国内外学者研究了大量改进算法。其中,基于人工神经网络的分类算法已经应用
发表于 2016-03-24
基于SVPWM的异步电机位置伺服控制系统研究与仿真
引言
在交流电机变频调速中pwm控制已经得到了日益广泛的应用,其中经典的正弦脉宽调制(spwm),它主要着眼于使逆变器输出的电压尽量接近正弦波,使pwm电压波的基波成分尽量大,谐波成分尽量小,但是该方法仅仅是一种近似,抑制谐波的能力有限。而电压空间矢量脉宽调制(svpwm)是把逆变器和电机视为一体,控制电机获得幅值恒定的圆形旋转磁场。它能够明显地减少逆变器的输出电压的谐波成分及电动机的谐波耗损,降低了转矩的脉动。本文根据矢量控制和svpwm调制原理,建立了仿真模型,并对仿真中的关键问题和仿真结果进行了分析。
系统仿真模型的建立
基于svpwm的矢量控制模型
图1为位置伺服控制系统框图,该系统通过clark
发表于 2015-05-07
基于svpwm变频调速的双电机控制算法应用
1.引言 随着工业技术的发展,在航空、军事、机械制造领域等需要多个电机同时驱动一个或多个工作部件进行协调控制的场合越来越多。传统的控制系统多采用单一电机实现单轴控制,电机的输出转矩有一定的限制,当传动系统需要较大的驱动功率时,必须特制功率与之相匹配的驱动电机和驱动器,使得系统的成本上升,而且过大的输出功率的电机受到制造工艺和电机性能的影响,大功率的驱动器的研制也会受到半导体功率器件的限制[1].电机在实时跟随同一目标转速的同时。还需要保持两电机问的转速同步,否则便会导致后面的机械传动精度下降。针对以上问题解决方法是采用多个电机对其进行控制,但是多电机之间同步的好坏直接影响到生产效率和产品质量,因此多电机同步控制的研究具有非
发表于 2014-10-16