浅析BLDC和PMSM的特点和区别

最新更新时间:2023-03-31来源: elecfans关键字:BLDC  PMSM  有刷直流电机 手机看文章 扫描二维码
随时随地手机看文章

在日常生活中,小到电动玩具,大到电动汽车,永磁电机的身影可以说是无处不在。有刷直流电机、无刷直流电机、永磁同步电机由于其结构和输出特定的不同也被应用到不同的场合。如果你经常拆一些玩具和家电,就会看到大量的有刷直流电机和无刷直流电机,而永磁同步电机主要应用在高精度的工业伺服和电动汽车领域。本文就从电机的结构和控制方面,对这几种常见的永磁电机做简单的梳理和归纳。

1、有刷直流电机和无刷直流电机

有刷直流电机是结构和控制最简单的直流电机,电机主要依靠电刷进行电流换向。使用一个电磁继电器或者半导体开关即可对其进行启停控制;如果有正反转要求,则需要4颗半导体开关器件构成H桥的形式进行 正反电流的控制 。使用半导体开关可以很方便的实现有刷电机的调速(通过控制PWM的占空比进行调节),因此基本上现在对于有刷电机都是采用功率MOSFET进行调速和控制。

图片

图1.1 有刷直流电机及其控制

有刷电机的电刷是一个易损件,因此有刷电机的 使用寿命有限 ,并且碳刷换向过程中释放出电火花无法应用在类似煤矿、油田这类具有易燃易爆物质的场景中。无刷直流电机(BLDC)的出现得益于开关半导体和电机控制芯片的发展,无刷直流电机取消的电刷换向,而使用功率半导体进行换向,驱动拓扑几乎都是三相两电平的结构,也就是我们常说的三相桥。( 更多的电机控制拓扑,关注我!后续带你探讨! )通过控制三相桥的导通时序和方向,产生牵引转子永磁体的磁场,在三相桥的切换过程中能够保持定子磁场和转子磁场一个相对比较稳定的位置(90°±30°),如图1.2所示。关于定子磁场如何根据转子进行旋转的,推荐阅读:【无中生有】旋转磁场的诞生

图片

图1.2 无刷直流电机的控制扇区

2、无刷电机结构和反电动势的波形

无刷直流电机转子是含有永磁体的,那么这和我们经常听到的 永磁同步电机(PMSM) 有什么区别呢?拆文解字来看:“永磁”-两种电机都是永磁电机;“同步”-无刷直流电机稍微有点不同步(定转子夹角:90°±30°)。从字面意义上并不能完全区分这两种电机的不同,实际上我们区分这两种电机的主要依据是:电机的反电动势波形!

如图2.1所示,BLDC的反电动势波形是“梯形波”,PSPM的反电动势波形是“正弦波”。

图片

图2.1 BLDC 和PMSM反电动势波形

那么是什么导致这两种电机的反电动势波形的不同呢?反电动势波形的控制属于电机设计过程中的关键,电机的定子排布和转子的磁场排布都对最终的反电动势波形产生影响,这里不展开讨论。如图2.2,我们大致感受下两种电机的结构差异。无刷直流电机的结构相对比较简单,定子线圈大多采用图2.1左所示的集中式绕组结构,该结构工艺简单,成本低廉,是应用范围最广的BLDC定子结构。而永磁同步电机的定子绕组更加 “分布、均匀” ,直觉上来看PMSM运行应该更加安静、顺滑。

图片

图2.2 BLDC 和 PMSM定子线圈结构

3、 Six-Step和 FOC控制

对于BLDC和PMSM在电机控制上有一定的区别和联系,从外面来看硬件差别不大,都是采用三相桥的结构,通过控制PWM进行调速。但是如果我们稍微深入了解下控制的技术细节,就会发现这两种电机的控制策略和成本还是存在很大的区别。

3.1 六步控制Six-Step

不管是对BLDC还是对PMSM的控制,都需要 知道转子的位置 ,有了转子的位置信息才能够确定三相桥的开关状态,从而控制定子的磁场方向。由于BLDC的反电动势是梯形波,存在这样快速的 “换向点” ,因此检测BLDC的位置相对来讲是比较简单:可以在定子内嵌入逻辑霍尔 传感器 ,检测转子磁钢的位置进行直接的定位;也可以通过检测反电动势的换向点进行无传感器的位置检测。根据反馈的位置信息,进一步对BLDC的通电时序进行控制,如图3.1所示。我们可以看到该控制方法关键在于:相与相之间两两导通,另外一个线圈不流过电流,可以作为反电动势的检测“传感器”。该控制的本质还是基于位置信息的通电逻辑控制,因此该控制方法对芯片的 要求极低 ,并且不需要额外的传感器成本,因此是BLDC最主流的控制方案。但是该控制的颗粒度很大,一般来讲转矩脉动和噪音都是比较大的,对于大功率,高性能的应用场合出现的频率比较小。

图片

图3.1 六步换向示意图

3.2 磁场定向控制FOC

磁场定向控制(FOC)的基本原理:通过 高精度的角度解析 ,产生和转子相对静止的控制磁场,实现对PMSM的像素级控制。关键的关键就是对电机转子的位置信息获取,一般来讲有如下几种方案:

  1. 位置编码器:通过高精度的光栅感应定子旋转过程中引起的数字编码变化,从而解析转子位置信息,一般应用在高精度的伺服系统中。

  2. Hall磁编码器:通过在电机轴的端部安装的永磁体旋转,引起Hall传感器的磁感线变化,从而解析转子位置信息,一般应用在中小功率泵类驱动系统中。

  3. 旋转变压器:电机轴的旋转引起旋转变压器感应电压的变化,通过一定的解码算法,从而解析转子位置信息,一般应用在高可靠性、高寿命的电动汽车系统中。

  4. 观测器位置算法:这是一种无位置传感器的方法,通过电机模型的建模计算出反电动势的变化,从而解析出转子的位置信息,该方法可靠性高,成本低,维护方便,也是电机控制最火热的方向。笔者认为,该方案主要取代的是Hall编码器的应用市场,对于高精度,高可靠性,快速动态性能的场合应用还是比较有限。

FOC的基础磁场控制逻辑如图3.2所示,依然使用最基础的6扇区,但是和Six-Step 控制不同的是,三相桥都参与了磁场控制,并且可以通过矢量合成的方式可以做到任意角度的磁场控制。关于FOC控制,相关的研究、论文和实践可以说是“汗牛充栋”,本文不展开进行具体控制策略。关注我,后续我们有时间,继续探索!

图片

图3.2 FOC的矢量合成示意图

3.3 BLDC的类FOC控制

在小电机的应用中,BLDC越来越广泛,对其要控制要求也是越来越高: 既要低成本,也要静谧性! 我们知道Six-Step的转矩脉动很大,电机功率小的应用还能忍受,电机功率稍微到几百瓦这个量级,噪音成为了产品的短板!因此,很多厂家也推出了类FOC的控制方案去控制BLDC,这类方案在 不增加系统成本得前提下 ,使BLDC运行的更安静!

所谓类FOC,其实最主要的就是我们把BLDC的角度进行更细的划分,那么这个更细角度主要是靠:猜!通过反电动势检测,我们能够检测出60°的反电动势换向点,那么在这个60°之间的角度,就要根据电机的运行速度和状态去插值,从而产生类似的平稳的“ 定向磁场 ”。

现在还有一个问题,就是三相都参与调制的情况下如何检测反电动势换向点?可以采用低成本数字Hall芯片进行磁钢位置检测,也可以通过驱动的适当控制,检测反电动换向点。如图3.3所示,是ELMOS所采用的一种的算法:就是在死区时间段内,检测相电压信号,从而获得相电流的方向信息,进而找出相电流的过零点。 从相电流推断反电动势过零点 ,可以预见该方法的环路响应是比较慢的。

图片

图3.3 ELMOS 反电动势过零预测

小结

本文简述了常见的永磁电机的基本类型:有刷电机、无刷电机和永磁同步电机。分别从电机结构,反电动势波形和控制方法上进行了比较,对其应用的场景和范围进行了总结。


关键字:BLDC  PMSM  有刷直流电机 编辑:什么鱼 引用地址:浅析BLDC和PMSM的特点和区别

上一篇:如何理解SVPWM调制过程中的电压利用率?
下一篇:步进电机的结构及控制原理

推荐阅读

感应电机和BLDC电机哪个好_感应电机和可逆电机的区别
  感应电机和BLDC电机哪个好   感应电机和BLDC电机都是常见的电机类型,它们各有优劣,应用场景也有所不同。下面简单介绍一下它们的优缺点:   感应电机的优点:   结构简单,制造成本较低。   可靠性高,寿命长。   转矩平稳,启动和运行过程中的噪音小。   对电网的负载变化具有较好的适应性,可在较大的负载范围内运行。   可以实现自动控制。   感应电机的缺点:   效率低,相比于BLDC电机,效率较低。   调速范围窄,无法实现精确控制。   启动电流较大,需要额外的电路进行限制。   BLDC电机的优点:   效率高,较感应电机效率更高。   调速范围广,可以实现精确控制。   启动转矩大,无需额外的起动装置。
发表于 2023-05-31
直驱电机和磁悬浮电机/bldc电机的区别
  直驱电机是什么意思   直驱电机是直接驱动式电机的简称,它主要指的是在驱动负载时不需要经过传动装置(如传动皮带等)的电机,直驱电机适合用于各类洗衣机,主要优点是静音、节能、平稳、动力强劲。   电机(英文:Electricmachinery,俗称“马达”)是指依据电磁感应定律而实现电能转换或传递的一种电磁装置,电机在电路中是用字母M(旧标准用D)表示的,它的主要作用是产生驱动转矩,从而作为用电器或各种机械的动力源。   直驱电机和磁悬浮电机/bldc电机的区别   直驱电机和磁悬浮电机都属于现代高科技电机的范畴,它们之间的区别主要在于其工作原理和应用领域。   直驱电机是指电机的转子直接安装在驱动轴上,通过直接转动
发表于 2023-05-22
大联大世平集团推出基于NXP等产品的BLDC电机无感方波驱动方案
2023年5月17日, 致力于亚太地区市场的国际领先半导体元器件分销商---大联大控股宣布,其旗下世平推出基于恩智浦(NXP)LPC845芯片的BLDC电机无感方波驱动方案。 图示1-大联大世平基于NXP等产品的BLDC电机无感方波驱动方案的展示板图 在体积更小、功率更高趋势的驱动下,电机的转速一路攀升。并且随着业内对于电机性能要求的不断提高,兼具更高能效与更长寿命BLDC电机受到了广泛关注。在此趋势下,大联大世平基于NXP LPC845芯片推出了BLDC电机无感方波驱动方案,该方案支持反电动势为方波的无传感器高速电机,其电子转速最高可达73000RPM,适用于负载较轻、成本较低的吸尘器、风机等的应用。 图示
发表于 2023-05-17
大联大世平集团推出基于NXP等产品的<font color='red'>BLDC</font>电机无感方波驱动方案
有刷直流电机的结构与原理
这是无刷电机技术手册系列的第2部分,它解释了有刷电机的结构和工作原理以供比较。接下来我们将解释无刷电机。 在讲解无刷电机的工作原理之前,我们先介绍一下无刷电机的前身——直流电机的结构和转动原理。DC电机是direct-current motor的简称,顾名思义就是施加直流电压旋转的电机。 有刷直流电机结构与原理 2.1 直流电机结构及转动原理 2.1.1 有刷直流电机结构 直流(有刷)电机的一般结构如图 2.1 所示。 永磁体位于定子内,位于定子中心的是包含绕组的转子。转子包含数个绕组,两端与换向器相连。电流通过与电刷接触的换向器流过绕组。该结构是这样的结构,转子的旋转切换换向器片与电刷接触,并且电流流过的绕组也依次切
发表于 2023-05-12
<font color='red'>有刷</font><font color='red'>直流电机</font>的结构与原理
一文详解无传感器PMSM 马达FOC控制算法详解
PMSM应用 高效率和高可靠性 设计用于高性能伺服应用 可实现有1无位置编码器的运行方式 比ACIM体积更小、效率更高、重量更轻 采用FOC控制可实现最优的转矩输出 平滑的低速和高速运行性能 较低的噪声和EMI
发表于 2023-05-11
一文详解无传感器<font color='red'>PMSM</font> 马达FOC控制算法详解
有刷直流电机的工作原理及主要构成
有刷直流电机的工作原理 有刷直流电机的工作原理图如图所示。在有刷直流电机的固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁芯和绕在环形铁芯上的绕组。 上图所示的两极有刷直流电机的固定部分(定子)上装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁芯。定子与转子之间有一气隙。在电枢铁芯上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。 有刷直流
发表于 2023-05-09
<font color='red'>有刷</font><font color='red'>直流电机</font>的工作原理及主要构成
小广播
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved