技术文章—SPI接口原理介绍

2019-07-15来源: EEWORLD作者: Piyu Dhaker关键字:SPI

过去十年,智能电表大范围替代传统电表的产业转变,成为工业物联网高速发展的一个缩影。中商产业研究院相关报告指出,预计2021年全球智能电表市场营收规模将达142.2亿美元,与2016年的88.4亿美元、2017年的97.2亿美元相比,年均复合增长率约10%。而Navigant Research研究报告指出,中国在2018年第一季度持续引领全球智能电表市场,安装量超过4.96亿台,占全球总量的68.4%,并正在向下一代智能电表发展。

 

201811231438042033263809

 

图1:中商产业研究院预测2021年全球智能电表市场营收规模

 

由此看来,中国智能电表行业已全面落地,这是否意味着电表市场将趋于平稳?非也。智能电表属于强制检定设备,到期需要更换,更换周期一般为5-10年。值得一提的是,国家电网发布智能电网规划、并启动大规模智能电表安装的时间点正是2009年,这表示中国的智能电表市场正处于集中替换周期。对于智能电表行业的供应链而言,无疑是重磅的利好消息!日前,富士通电子元器件(上海)有限公司产品管理部总监冯逸新在一次公开研讨会上表达了同样的观点:“智能表计行业是富士通长期关注的重点业务,在未来几年具有很大的市场潜力。”对此,富士通推出了众多创新型存储产品,如FRAM铁电存储器在智能电表行业已经作为标准存储器被广泛采用,在中国、欧洲、北美等地区拥有很大的市场占有率,比如威胜集团、海兴电力、林洋能源、Itron、西门子等业界主流的电表供应商都是富士通FRAM的客户。

 

累计出货超八千万,富士通FRAM强势进击电表市场

 

工业物联网的蓬勃发展,对数据链上如数据采集、数据记录、数据处理等各个环节的应用提出了更高的要求。对于智能电表而言,数据记录及存储需要考虑准确记录、非易失性、耐久度等多个方面的需求。因此,智能电表方案商需考虑挑选合适的存储产品予以应对。冯逸新称:“富士通FRAM在需要准确记录和存储智能电表重要数据的应用中、发挥着关键作用。例如电表使用的重要数据,需要在非常短的间隔(1-3次/秒)里保存在存储器,并确保掉电情况下数据依然完整。”

 

无标题0

 

图2:智能电表选用FRAM可确保掉电情况下数据依然完整

 

以256Kb独立FRAM存储器为例,每写入1Byte数据,所需时间仅为150ns。因此,富士通FRAM在智能电表应用中带来了关键的优势:掉电保护重要数据。国家电网公司也有规定,重要数据必须以1次/秒的频率实时记录到存储器,按照智能电表10年运行周期来计算,存储器需达到写入次数为:1*60*60*24*365*10=3.2亿次。当前,单片FRAM写入次数寿命高达10万亿次,而EEPROM仅有百万次。显然,选用高速、高读写耐久性的富士通FRAM能够满足数据写入性的要求,并在掉电或者其它异常情况发生时,能确保重要数据的完整记录,从而确保电力产业的准确收费。冯逸新自豪地表示:“富士通FRAM在智能电表行业已深耕10年之久,内置有富士通FRAM的智能电表是当前电力公司所追求的理想解决方案!2018年,富士通FRAM面向全球电表客户已累计交货8,000万片,为智能电表行业提供高性能、高可靠的存储方案!”

 

无标题

 

图3:面向全球电表客户的富士通FRAM产品已累计交货8,000万片

 

不仅如此,在物联网时代,企业与消费者对数据保密与安全的认知进一步提升。若遇到黑客违法盗取及分析电表的机密数据,将导致大范围的信息泄露。对此,富士通FRAM赋予了智能电表应用的另一优势,就是防止黑客盗窃或篡改数据。当黑客的篡改事件发生时,低功耗和高速的FRAM可以利用给RTC供电的小型电池电源,瞬间消去重要数据,从而确保电力用户的信息安全。例如FRAM仅需0.1mA的工作电流,就能够在0.3ms的时间内擦除256bit的数据,相比EEPROM拥有显著的优势。

 

无标题1

 

无标题2

 图4:智能电表防止黑客盗窃或篡改信息的系统构成及FRAM高速擦除数据的优势

 

基于FRAM实现低成本“通用”智能表计方案

 

经过智能电表市场的长期验证,富士通FRAM产品在不断优化性能与降低成本的同时,也逐步转向更广泛的智能表计市场,如水表、热表、燃气表等领域。“水、气表这些行业与电表的市场规律有一定的差异,”冯逸新表示,“最明显的一点就是水表、气表必须选用电池供电,而非电表那样可直接接入电源,因此低功耗成为了水、气表方案最关键的需求。”

 

据介绍,富士通FRAM在近几年也逐渐打入全球智能水、气表的主流供应链,成为准确记录和存储智能水、气表重要数据的标准元件。富士通FRAM在智能水、气表中的应用,与智能电表类似,如非易失性与高写入耐久性确保了准确、可靠的数据记录。此外,由于水、气表使用电池供电,FRAM拥有超低功耗的特性使之备受方案商的青睐。以64Byte数据写入为例,FRAM的功耗仅仅是EEPROM的1/440,可以轻松应对实时、频繁存储数据的工作模式,这不仅大大延长了电池寿命,更有助于电池与设备的小型化。

 

无标题3

 

图5:富士通FRAM在智能水、气表计中的应用

 

在实际应用中,富士通建议采用超低容量FRAM (4Kbit)与EEPROM并用,帮助实现低成本的电、水、气、热智能表计方案。冯逸新表示:“智能电表,特别是单相电、水、气、热表对方案成本的要求非常苛刻,采用FRAM与EEPROM并用的方案设计可实现智能表计的高可靠性与安全性,并在整体方案架构上省去用于EEPROM掉电保护的大电容,从而有效地降低系统整体的BOM成本。”

 

无标题4

 

图6:基于FRAM打造低成本的智能表计方案

 

性能突破、造价更低,下一代存储“神器”NRAM已在路上!

 

如上文提及,富士通FRAM已经能够满足智能表计应用的各类需求,但富士通已投入开发与试产下一代高性能存储产品——NRAM。NRAM是富士通与Nantero公司协议授权后,共同打造的下一代颠覆性新型存储器,因为它同时继承了FRAM的高速写入、高读写耐久性,又具备与NOR Flash相当的大容量与造价成本,并实现很低的功耗。以智能表计方案为例,使用一个NRAM就可以替代电、水、气、热表中的Flash、FRAM和EEPROM等所有存储单元,不仅减少了存储器的使用数量,也有利于系统工程师简化设计上的难度。

 

无标题5

 

图7:基于富士通NRAM可简化智能表计方案设计

 

作为NRAM的第一代产品,16M bit的DDR3 SPI接口产品最快将于2020年底上市,势必引发存储行业的新一轮变革。冯逸新自信地表示:“NRAM既继承了FRAM的高性能,又具有替换NOR Flash大容量的特点,我们坚信这必将是一个划时代的存储器解决方案!



关键字:SPI

编辑:muyan 引用地址:http://news.eeworld.com.cn/wltx/ic467966.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:GaN之战开打,各大厂家蠢蠢欲动
下一篇:高通的5G芯片这么牛,为何依旧青睐华为

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

16.HAL库之SPI和QSPI

1.SPI协议(以RN8302为例)SPI是串行外设接口(Serial Peripheral Interface)的缩写。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线(SCSN,SCLK,SDI,SDO).总结传输流程:a.写时序SCSN拉低,开启通讯。主机依次写入地址,命令,数据(高位在前,低位在后),CS校验。主机在SCLK下降沿将数据通过SDI写入从机。最后SCSN拉高结束通讯。b.读时序SCSN拉低开启通讯,主机先写入地址+命令共两个字节,随后在SCLK下降沿读取从机从SDO输出的数据(高位在前,低位在后)。最后SCSN拉高结束通讯。驱动程序编写:头文件中需定义管脚控制命令,寄存器地址,芯片
发表于 2019-08-16
16.HAL库之SPI和QSPI

初探STM32 SPI2中断接收多组数据的处理方式

一、描述        两块STM32板子之间进行SPI通讯,都使用的是SPI2。主机连续发送多组数据(数据的格式为半字,即16位),从机采用SPI2中断方式接受主机发过来的多组数据。针对从机中断接受方法我尝试了两种方案:方案一:从机每接收主机发来的一组数据就进入中断一次,即主机发来几组数据从机就进入几次中断。方案二:仅当主机发来第一组数据时,从机才触发一次中断,然后关闭中断,以循环接受的方式接受主机发过来的剩下几组数据,当所有数据接受完后,再打开从机的接受中断。二、程序        因为两种方案的主机程序是一样的,如下:uint16_t 
发表于 2019-08-15

STM32F103做从机SPI通信SPI3中断异常

在做AM335D板子与STM32F103使用SPI通信时,需要用到STM32的从机模式,所以特别对于ST的从机模式进行了研究,由于硬件上使用的是STM32F103的SPI3,所以过程中遇到了一点麻烦,这里记录一下过程,以备查阅:使用SPI3通信时,从机时钟产生不了中断,经过查阅资料,是因为spi3的nss口与JTAG有共用引脚,所以配置错误会导致SPI3无法使用。需要注意以下两点就可以了:1.开启GPIO时钟的同时,开启AFIO时钟,如下:RCC_APB2PeriphClockCmd(    RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO, ENABLE ); 
发表于 2019-08-15

关于stm32的spi发送命令时的注意事项

        近日在进行一个倾角仪产品操作时,发现了stm32在往外发送数据时出现的一个问题。类似问题以前也出过,现在再次出现。特地写下来提醒自己注意以后防止再犯错。        该倾角仪adis16210与主控制器stm32通信时选用的是spi接口,并且在后续的操作过程中是使用stm32的官方函数库。在初期程序调试时,只是进行了spi的读操作(adis可以不用设置初试参数),能正常进行spi的读操作,能获取到随姿态变好的角度值。        在使用过程中,发现倾角仪更新数据太慢,因此需要对倾角仪进行设置
发表于 2019-08-14

【STM32CubeMX】12,STM32之SPI串行FLASH

1,野火的自带版本讲的还不错,综合多方的资料看比较好(1)  SS ( Slave Select):从设备选择信号线,常称为片选信号线,也称为 NSS、CS,以下用 NSS 表示。当有多个 SPI 从设备与 SPI 主机相连时,设备的其它信号线 SCK、MOSI及 MISO 同时并联到相同的 SPI 总线上,即无论有多少个从设备,都共同只使用这 3 条总线;而每个从设备都有独立的这一条 NSS 信号线,本信号线独占主机的一个引脚,即有多少个从设备,就有多少条片选信号线。I2C 协议中通过设备地址来寻址、选中总线上的某个设备并与其进行通讯;而 SPI 协议中没有设备地址,它使用 NSS 信号线来寻址,当主机要选择从设备时
发表于 2019-08-14
【STM32CubeMX】12,STM32之SPI串行FLASH

STM32-(18):SPI与数码管(SPI)

SPI串行接口SPI是由Motorala公司提出的一种同步串行外围接口。它在速度要求不高、低功耗、需保存少量参数的智能化传感系统中得到了广泛应用。SPI是一个全双工的同步串行接口。在数据传输过程中,总线上只能是一个主机和一个从机进行通信。1、MISO(Master In Slave Out)主机输入、从机输出信号。2、MOSI(Master Out Slave In)主机输出、从机输入信号。3、SCK(Serial Clock)串行时钟信号。(用来同步使用的)4、SS(Slave Select)从机选择信号,低电平有效。SPI系统连接SPI总线可在软件的控制下构成各种简单或复杂的系统。SPI通信工作原理SPI的基本结构相当于两个
发表于 2019-08-12
STM32-(18):SPI与数码管(SPI)

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved