NXP带你了解超宽带(UWB)工作原理及其非凡的潜力

2020-03-31来源: EEWORLD关键字:NXP  UWB

在移动终端、汽车、物联网与工业等广泛的市场中,开发人员一直在积极寻求一种精密的测距技术,来实现精准的室内与室外定位。幸运的是,UWB在近期经过“改造”,成为精确、安全的实时定位技术,优于Wi-Fi、蓝牙和GPS等无线技术。超宽带技术能够实时处理环境信息,如位置、移动及其与UWB设备间的距离,这些信息已精确到几厘米,这为系统增添了空间感知能力,从而将推动一系列激动人心的新应用的开发。为了解UWB的潜力,请务必考虑UWB在测量飞行时间、到达角、尤其是其安全属性方面的独有特点。

 

基于UWB的汽车应用——更加智能的智能钥匙

 

在2019年下半年,汽车制造商纷纷推出计划,实施基于UWB的无钥匙汽车门禁,并将探索UWB支持的新用例,如车内乘客检测、自动代客泊车、自动泊车、停车场进入和免下车支付等。  对于即将到来的UWB浪潮,其中一个备受期待的用例是通过智能手机实现无钥匙门禁(PKE)。

 

通过PKE,您可以在不使用机械钥匙的情况下解锁和启动汽车。遥控钥匙装在您的口袋或钱包中,当进入解锁车门的适当范围内时,遥控钥匙会被“唤醒”。进入汽车后,系统会检测到遥控钥匙,以激活点火启动按钮。

 

PKE遥控钥匙深受汽车制造商的欢迎,因为它们能够提供极大的便利性,并且备受客户期待。此外,如果使用遥控钥匙,转向柱将不再需要笨重的锁芯,这减轻了汽车重量,降低了发生碰撞时膝盖受伤的风险。消费者对这一技术也十分青睐,因为无需寻找或拨动机械钥匙来开锁、启动或锁车,生活变得更加方便了。遗憾的是,如今许多遥控钥匙也成了窃贼的目标,他们使用现成可用的廉价入侵设备来检测汽车的唤醒信号,然后将该信号重新定向至钥匙以便唤醒钥匙,使其强制发出不必要的开锁信号。这就是我们所熟知的中继攻击。

 

中继攻击之所以成为可能,是因为现在有一些遥控钥匙利用信号强度——不是时间戳——来检测何时车主距离汽车两米内。攻击通常由两个人完成,一个人在钥匙附近,另一个人在汽车附近。当您走出汽车,比如前往购物商场、咖啡厅或餐厅,或者如果您在家,而您的车钥匙靠近玄关或窗户,第一个窃贼会尽量接近钥匙,发出您汽车所发送的同类型查询来检测钥匙。如果您的钥匙响应查询,表示其在范围内,第一个窃贼会捕捉响应信号,然后将该信号发送(或中继)给等候在汽车旁的第二个窃贼。然后,第二个窃贼使用捕捉到的响应信号欺骗汽车解锁并启动。

 

160926_SCA_Drive-wayAttack

 

图1:中继攻击复制信号并使用该信号开锁(来源:恩智浦)

 

通过为PKE遥控钥匙和智能手机门禁添加UWB,ToF计算能够有效地防止中继攻击。窃贼检索的任何信号都标记有时间戳,指示信号是在范围以外的某个地方生成的。当信号到达汽车时,计算得出的行程时间会显示发出信号的点过于远,无法开门。拿着午后场电影票的影迷无法进入深夜秀场,因为电影票上显示的时间是错误的而且已过期,同样,盗版的UWB信号不会让窃贼进入汽车,因为信号显示的时间是错误的,从本质上来说已过期。

 

UWB的起源与现状

 

1960年代,人们首次开发出UWB,将其用于雷达应用。后来,该技术经过调整,用作正交频分复用(OFDM)技术,并在IEEE.15.3中标准化为速度高达480 Mbps的超高数据速率传输技术。在这个容量方面,该技术与WiFi直接竞争,但WiFi很快使其数据传输功能相形见绌,使得UWB在传输用例中退居二线。基于脉冲无线电技术,UWB的下一个角色则成功得多。如IEEE 802.15.4a中指定的,它使用2ns脉冲来测量飞行时间和到达角的值。不久后,其安全功能通过IEEE 802.15.4z中指定的扩展得到增强(在PHY/RF级别),这使其成为独特的安全精密测距和感应技术。

 

使用智能手机作为智能钥匙来进入和启动汽车的想法极具吸引力,因此,汽车和智能手机行业的领先企业纷纷积极参与,在802.15.4z标准中定义安全机制。UWB为何能够以如此高的精度处理这么重要的用例?让我们来探索一下该技术的背景和环境。

 

什么使UWB成为与众不同的无线技术

 

与大多数无线技术不同,超宽带(UWB)通过脉冲无线电工作。它在宽频带上使用一系列脉冲,因此有时也被称为IR-UWB或脉冲无线电UWB。相比之下:卫星、Wi-Fi和蓝牙在窄频带上使用调制正弦波来传输信息。

 

UWB脉冲具有多个重要特点。首先,它们陡而窄,看起来像尖峰一样,即使是在嘈杂的通道环境中,也很容易识别。此外,与WiFi或BLE等其他技术相比,对于ToF测距,UWB脉冲更适合密集多径环境。由于主信号路径旁的对象会引起反射或中断,通过多个路径到达接收器的无线电信号在IR-UWB系统里很容易与主信号区分开来。但这件事在窄带系统里却非常耗时和困难。

 

UWB在无线电频谱的其他部分工作,远离聚集在2.4 GHz周围的繁忙ISM频段。用于定位和测距的UWB脉冲在6.5和8 GHz之间的频率范围内工作,不会干扰频谱其他频段发生的无线传输。这意味着UWB能够与现在最流行的无线形式共存,包括卫星导航、Wi-Fi和蓝牙。

 

在典型功率级工作时,距离最长可达10米左右。但如果使用较高功率脉冲,UWB的距离甚至可达200米。UWB通信还可以传输数据,其中UWB数据包的有效载荷部分以大约7 Mbps的速率发送数据,并且可以继续加速,最高可达32 Mbps。

 

现在,UWB使用调制脉冲序列,持续时间为2ns,非常短。脉冲间距可以相同,也可以不同。脉冲重复频率(PRF)从每秒数十万脉冲到每秒数十亿脉冲不等。通常支持的PRF是62.4 MHz和/或124.8 MHz,分别称为PRF64和PRF128。UWB的调制技术包括脉冲位置调制和二进制相移键控。

 

定义脉冲重复频率

 

脉冲发射器在开与关之间切换,以特定速率(PRT或PRF)提供峰值功率(Ppeak)

 

最大距离与发射器输出功率直接相关。系统发射的能量越多,目标检测距离将越大。

 

飞行时间(ToF)计算

 

在科学和军事应用中,确定两点(或两个设备)间水平距离的过程被称为测距。飞行时间(ToF)是测距的一种形式,使用信号行程时间来计算距离。图2提供了ToF计算在配备UWB的两台设备中如何工作的基本描述。

 

 

图2:UWB的飞行时间计算,其中设备1是控制器,设备2是受控器(来源:恩智浦)

 

为了计算飞行时间(ToF),我们测量信号从到达点传输到B点所花费的时间。我们选取消息往返时间的往返读数,这包括设备2中的处理时间。然后减去处理时间,再除以2,便可得出ToF。为了确定在传输过程中覆盖了多少地面,将ToF乘以光速即可。

 

由于UWB的高带宽(500 MHz),脉冲宽度为纳秒级,这提高了精度。与使用窄带收发器的WiFi和BLE不同,ToF和测距的精度限于约+/-1m至+/-5m,而UWB可精确到+/-10cm以内。

 

由于UWB信号明显不同且易于读取,即便在多通道环境中也是如此,因此当脉冲离开和到达时,信号更容易识别,且高度确定。UWB能够以超高的传输速率准确跟踪脉冲——在短突发时间内发送大量脉冲——因此即使距离非常短,也可以进行细粒度ToF计算。

 

调制正弦波在使用Wi-Fi或蓝牙确定位置时会出现,其多通道分量只能以复杂的方式分离。这也就是Wi-Fi和蓝牙为何努力提供精度低于1米的准确测量值的部分原因。

 

图3对UWB ToF计算与Wi-Fi和蓝牙的ToF计算进行比较。

 

图3:通过Wi-Fi和BLE与通过UWB进行的ToF测距(来源:恩智浦)

 

可选到达角(AoA)计算

 

请务必注意,ToF计算确定的是径向距离,而不是方向。也就是说,ToF计算告诉设备1其与设备2之间的距离,但不告诉设备2的方向——前、后、左、右、东、南、西还是北。所以ToF图是一个圆圈:如果ToF计算表明设备2与设备1之间的距离为15 cm,则以设备1为圆心,用卷尺在每个方向测量15 cm,以此方式形成一个圆圈,设备2可以在该圆圈中的任意位置。若要通过第二次测量的方式,使用两个距离圆圈的交集来确定位置,则需要额外的设备。

 

因此,要完善UWB技术的讨论,我们应该考虑另一个方面,也就是当前非汽车应用的一个重要因素:到达角(AoA)。到达角可帮助确定设备2在该圆圈中的哪个位置。为了计算AoA,设备1需要配备一组小心放置的专用天线,这组天线仅用于AoA测量。并非所有UWB解决方案都包含额外天线,但包含额外天线的UWB能够精确到几厘米以内(图4)。

 

图4:ToF测距与AoA生成高准确度(来源:恩智浦)

 

AoA计算是单独进行的,与ToF计算不同,但二者具有相似性:它们都以脉冲定时开始。在AoA阵列中的每个天线,接收到的每个信号的到达时间与相位存在微小但可辨别的差异。记录每个信号的到达时间与相位,然后用于类似三角测量的几何计算中,从而确定信号来自哪里。

 

图5中左图以设备1上的两个AoA天线Rx1和Rx2为例。与Rx2相比,从设备2发出的信号需要更长时间才能到达Rx1,这表示Rx1、Rx2和信号原点组成的三角形向右倾斜,指示信号来自设备1的东北方向。

 

与Rx2相比,从设备2传输到设备1的信号需要更长时间才能到达Rx1。图5中右图显示的AoA计算使用到达时间和天线间距来确定每个传入信号的角度,并绘制由Rx1、Rx2和设备2组成的三角形。在本例中,该三角形中Rx1的边较长,并指向右边,这表示设备2在设备1的右边。

 

image.png 

图5(左):设备1上两个AoA天线Rx1和Rx2的示例(来源:恩智浦)

 

图5(右):AoA计算使用到达时间和天线间距来确定每个传入信号的角度(来源:恩智浦)

 

UWB如何管理安全性

 

UWB中增添的其中一个重要特性是物理层(PHY)中用于收发数据包的额外部分,这作为即将推出的802.15.4z规范的一部分进行定义。该新特性以恩智浦开发和推荐的一项技术为基础,称为扰频时间戳序列(STS)。新特性增添了加密、随机数生成和其他技术,使得外部攻击者更难访问或操控UWB通信。

 

保护ToF计算

 

飞行时间计算很容易受到距离操控的影响。如果您可以干扰时间戳或计算的其他方面,就可以使您看起来比实际更近。在特定应用中,如安全访问,这会欺骗系统认为授权用户在旁边(但实际上并没有)并触发开锁(其实不应开锁),这是个严重的问题。

 

针对测距的原始UWB标准802.15.4a已发布十多年,对安全性的重视已经跟不上现在的发展。在测试4a标准时,研究人员发现,外部攻击者能够以超过99%的概率将测量的距离减少多达140米。对这一特定漏洞的担忧促使人们开始修订4z标准。

 

具体想法是,通过为PHY数据包添加加密密钥和数字随机性,阻止ToF相关数据可访问或可预测。这有助于抵御使用原始UWB PHY的确定性和可预测性质来操控距离读数的各种外部攻击,包括Cicada工具、Preamble注入和早检测/晚连接(EDLC)攻击。更新后的方法能够提供尽可能最好的保护,避免遭到以操控距离测量值为目标的暴力攻击。

 


关键字:NXP  UWB 编辑:muyan 引用地址:http://news.eeworld.com.cn/wltx/ic492945.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:瑞萨电力线载波通信IC为松下提供更高效照明方案
下一篇:专利解密—带你了解中兴可见光通信接入点切换技术

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

NXP CTO:了解分布式网络,并保持好奇心
翻译自——eetimes  EE Times和EDN对NXP半导体公司的首席技术官Lars Reger进行了一次深度访谈,Lars被任命为CTO,此后一直负责NXP的整体技术组合。以及EE Times记者兼embedded.com主编Nitin Dahad参加了与Reger的对话。  随着我们越来越多地进入一个紧密相连的按需世界,工程技能需要如何改变?这是首席技术官Lar Reger最关注的问题。 他非常清楚这样一个事实:到2025年,联网设备的数量将达到750亿台,这将带来与信任、隐私、安全和风险管理相关的问题。Reger认为这些都是很重
发表于 2020-05-20
NXP CTO:了解分布式网络,并保持好奇心
小米Mi 10智能手机采用恩智浦射频前端解决方案
恩智浦半导体宣布,公司最新推出的适用Wi-Fi 6标准的射频前端(RFFE)解决方案被小米Mi 10 5G智能手机采用。 高级5G设备推动了市场对性能、集成、尺寸和Wi-Fi 6功能的巨大需求。恩智浦RFFE解决方案高度集成,结构十分紧凑,采用3 mm x 4 mm封装尺寸。搭配Wi-Fi 6功能,能够支持高级便携式计算设备(包括高级5G智能手机),并以优异的性能支持2x2 MIMO功能。恩智浦的紧凑型高性能RFFE解决方案可以帮助原始设备制造商(OEM)缩短设计时间,大幅加快上市时间。 小米Mi智能手机副总裁兼硬件研发部总经理张雷表示:“小米非常高兴能够与恩智浦合作,共同为我们的旗舰5G智能手机开发支持Wi-F
发表于 2020-05-20
IAR的C-Trust安全开发工具支持NXP MCU
IAR Systems的C-Trust安全开发工具现在支持NXP的一系列MCU,包括K22 / 24/64 / V65 / V58和i.MX RT1064交叉设备。新增的支持使开发人员可以使用这些和其他NXP MCU来实现高级安全功能,并确保符合新兴的安全标准,例如EN 303645,SB 237,HB 2395和韩国互联网与安全机构(KISA)的“ IoT服务计划从个人信息角度”指南。C-Trust是IAR Embedded Workbench的一部分,可为不具备深厚技术安全知识的开发人员提供保护,而几乎无需进行任何返工即可保护新的或现有的应用程序。它提供了针对IP盗窃,恶意软件注入,伪造,超额生产以及一系列其他威胁。“NXP
发表于 2020-05-19
为何说NXP在汽车行业有着广阔的前景
翻译自——seekingalpha  当恩智浦半导体(NXPI)公布季度业绩时,他们让投资者对汽车和芯片行业有了充分的了解。鉴于疫情对供应链和需求的影响,投资者将听取其对汽车行业的负面影响的看法。因此,NXP表示,中国对高科技汽车的需求开始反弹时,它无意中预测到了蔚来汽车(Nio)的反弹。 自瑞幸咖啡(LK)事件加深了对中国公司的不信任之后,。为什么投资者会关心Nio?如果COVID-19对上个季度的销售造成压力,NXP的近期前景如何? 在中国开始反弹 美国过去常常为投资者提供需求反弹的领先指标。这在COVID-19之后发生了逆转。中国在武汉实施了最严厉的封锁。60天后,中国重新
发表于 2020-05-13
为何说NXP在汽车行业有着广阔的前景
NXP i.MX RT106L和RT106F处理器贸泽开售
专注于引入新品的全球电子元器件授权分销商贸泽电子 (Mouser Electronics) 即日起开售NXP® Semiconductors的i.MX RT106L和i.MX RT106F跨界处理器。这是两款专门针对特定解决方案设计的EdgeReady™器件,搭载Arm® Cortex®-M7核心的高级实现,运行频率可达600MHz,分别适用于在各种物联网 (IoT) 和智能工业设计中执行高级本地语音命令操作和实时人脸识别响应。 贸泽电子分销的i.MX RT106L跨界处理器使开发人员能够以轻松、低成本的方式将基于本地命令的远场语音控制功能加入到各种物联网、智能
发表于 2020-05-13
NXP i.MX RT106L和RT106F处理器贸泽开售
NXP超低功耗、多协议无线MCU系列可最大限度延长电池寿命
恩智浦半导体(NXP Semiconductors N.V.,纳斯达克代码:NXPI)今日宣布推出新的超低功耗、多协议无线微控制器(MCU)系列K32W061/41。新的低功耗设备完善了公司近期推出的引脚兼容JN5189/88 (Thread™/Zigbee®)和QN9090/30 (Bluetooth® LE)MCU,为原始设备制造商(OEM)带来更轻松的迁移路径,帮助他们支持现有和新兴的智能家居,构建使用案例。 降低当今智能家居和物联网设备的功耗对于最大限度地提高单纽扣电池的性能来说至关重要。恩智浦K32W061/41 MCU通过多种低功耗模式以及低发送/接收无线电功耗能力实现了这一点。 恩智浦连接解决方案
发表于 2020-05-13
小广播
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved