从手机到基站,你的数据是如何传送的?

2020-11-21来源: 鲜枣课堂关键字:基站  射频  手机
说起基带和射频,相信大家都不陌生。它们是通信行业里的两个常见概念,经常出现在我们面前。


基带(Baseband)是手机中的一块电路,负责完成移动网络中无线信号的解调、解扰、解扩和解码工作,并将最终解码完成的数字信号传递给上层处理系统进行处理,基带即为俗称的BB,Baseband可以理解为通信模块。以iPhone为例,基带中包含了一个通信系统,是用来控制iPhone通讯的程序,控制电话通讯、WiFi无线通讯、还有蓝牙通讯。iPhone的无线信号是和基带直接相关连的,在“设置”里点击“通用”,再点击“关于本机”,在关于本机界面中的调制解调器固件的内容即为基带版本号。


在我们的手机中通常由两大部分电路组成,一部分是高层处理部分,相当于我们使用的电脑;另一部分就是基带,这部分相当于我们使用的Modem,手机支持什么样的网络制式(GSM、CDMA、WCDMA、TD-SCDMA等)都是由它来决定的,就像ADSL Modem和普通窄带Modem的区别一样。


我们用手机打电话、上网、发短信等等,都是通过上层处理系统下发指令(通常是标准AT指令)给基带部分,并由基带部分处理执行,基带部分完成处理后就会在手机和无线网络间建立起一条逻辑通道,我们的话音、短信或上网数据包都是通过这个逻辑通道传送出去的。


射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围从300kHz~300GHz之间。射频就是射频电流,简称RF,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。射频(300K-300G)是高频(大于10K)的较高频段,微波频段(300M-300G)又是射频的较高频段。


在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。在电磁波频率低于100kHz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100kHz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。我们把具有远距离传输能力的高频电磁波称为射频。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。


不过,越是常见的概念,网上的资料就越混乱,错误也就越多。这些错误给很多初学者带来了困扰,甚至形成了长期的错误认知。

所以,我觉得有必要写一篇文章,对基带和射频进行一个基础的介绍。

——  正文开始  ——

现在都流行“端到端”,我们就以手机通话为例,观察信号从手机到基站的整个过程,来看看基带和射频到底是干什么用的。

当手机通话接通后,人的声音会通过手机麦克风拾音,变成电信号。这个电信号,是模拟信号,我们也可以称之为原始信号。

声波(机械波)转换成电信号

此时,我们的第一个主角——基带,开始登场。

基带,英文叫Baseband,基本频带。

基本频带是指一段特殊的频率带宽,也就是频率范围在零频附近(从直流到几百KHz)的这段带宽。处于这个频带的信号,我们成为基带信号。基带信号是最“基础”的信号。

现实生活中我们经常提到的基带,更多是指手机的基带芯片、电路,或者基站的基带处理单元(也就是我们常说的BBU)。


回到我们刚才所说的语音模拟信号。

这些信号会通过基带中的AD数模转换电路,完成采样、量化、编码,变成数字信号。具体过程如下如所示:


上图中的编码,我们称之为信源编码。

信源编码,说白了,就是把声音、画面变成0和1。在转换的过程中,信源编码还需要进行尽可能地压缩,以便减少“体积”。

对于音频信号,我们常用的是PCM编码(脉冲编码调制,上图就是)和MP3编码等。在移动通信系统中,以3G WCDMA为例,用的是AMR语音编码。

对于视频信号,常用的是MPEG-4编码(MP4),还有H.264、H.265编码。大家应该也比较熟悉。

除了信源编码之外,基带还要做信道编码。

编码分为信源编码和信道编码

信道编码,和信源编码完全不同。信源编码是减少“体积”。信道编码恰好相反,是增加“体积”。

信道编码通过增加冗余信息,对抗信道中的干扰和衰减,改善链路性能。

举个例子,信道编码就像在货物边上填塞保护泡沫。如果路上遇到颠簸,发生碰撞,货物的受损概率会降低。


去年联想投票事件里提到的Turbo码、Polar码,LDPC码,还有比较有名的卷积码,全部都属于信道编码。

除了编码之外,基带还要对信号进行加密。

接下来的工作,还是基带负责,那就是调制。

调制,简单来说,就是让“波”更好地表示0和1。


最基本的调制方法,就是调频(FM)、调幅(AM)、调相(PM)。如下图所示,就是用不同的波形,代表0和1。


现代数字通信技术非常发达,在上述基础上,研究出了多种调制方式。例如幅移键控(ASK)、频移键控(FSK)、相移键控(PSK),还有正交幅度调制,也就是大名鼎鼎的QAM(发音是“夸姆”)。

为了直观表达各种调制方式,我们会采用一种叫做星座图的工具。星座图中的点,可以指示调制信号幅度和相位的可能状态。


星座图

16QAM示意图
(1个符号代表4个bit)

调制之后的信号,单个符号能够承载的信息量大大提升。现在5G普遍采用的256QAM,可以用1个符号表示8bit的数据。

256QAM

好了,基带的活儿总算是干完了。接下来该怎么办呢?

轮到射频登场了。

射频,英文名是Radio Frequency,也就是大家熟悉的RF。从英文字面上来说,Radio Frequency是无线电频率的意思。严格来说,射频是指频率范围在300KHz~300GHz的高频电磁波。

大家都知道,电流通过导体,会形成磁场。交变电流通过导体,会形成电磁场,产生电磁波。


频率低于100kHz的电磁波会被地表吸收,不能形成有效的传输。频率高于100kHz的电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。


这种具有远距离传输能力的高频电磁波,我们才称为射频(信号)。

和基带一样,我们通常会把射频电路、射频芯片、射频模组、射频元器件等产生射频信号的一系列东东,笼统简称为射频。

所以,我们经常会听到有人说:“XX手机的基带很烂”,“XX公司做不出基带”,“XX设备的射频性能很好”,“XX的射频很贵”……之类的话。

基带送过来的信号频率很低。而射频要做的事情,就是继续对信号进行调制,从低频,调制到指定的高频频段。例如900MHz的GSM频段,1.9GHz的4G LTE频段,3.5GHz的5G频段。

射频的作用,就像调度员

之所以RF射频要做这样的调制,一方面是如前面所说,基带信号不利于远距离传输。

另一方面,无线频谱资源紧张,低频频段普遍被别的用途占用。而高频频段资源相对来说比较丰富,更容易实现大带宽。

再有,你也必须调制到指定频段,不然干扰别人了,就是违法。

在工程实现上,低频也不适合。

根据天线理论,当天线的长度是无线电信号波长的1/4时,天线的发射和接收转换效率最高。电磁波的波长和频率成正比(光速=波长×频率),如果使用低频信号,手机和基站天线的尺寸就会比较大,增加工程实现的难度。尤其是手机侧,对大天线尺寸是不能容忍的,会占用宝贵的空间。

信号经过RF射频调制之后,功率较小,因此,还需要经过功率放大器的放大,使其获得足够的射频功率,然后才会送到天线。

信号到达天线之后,经过滤波器的滤波(消除干扰杂波),最后通过天线振子发射出去。

电磁波的传播

基站天线收到无线信号之后,采取的是前面过程的逆过程——滤波,放大,解调,解码。处理之后的数据,会通过承载网送到核心网,完成后面的数据传递和处理。

以上,就是信号大致的变化过程。注意,是大致的过程,实际过程还是非常复杂的,还有一些中频之类的都没有详细介绍。

我把大致过程画个简单的示意图如下:


怎么样,是不是相当于重温了一遍我们的《通信原理》?事实上,大家会发现,现实中的情况,和我们书本上的内容,还是有很大出入的。


关键字:基站  射频  手机 编辑:muyan 引用地址:http://news.eeworld.com.cn/wltx/ic517242.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:Gartner:2021年全球公有云终端用户支出将超三千亿美元
下一篇:蓝牙这两大利器,可让无线通讯变得更可靠

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

山西:年底计划建成1.5万座5G基站
据黄河新闻网报道,到2020年年底,山西省计划建成5G基站1.5万座。截至9月底,山西省5G建设累计完成投资40亿元,累计开通5G基站14220座,完成全年目标的94.8%。据介绍,三大运营商均已实现5G在山西省设区市中心城区基本覆盖,正在向县域延伸。2019年,山西省出台《关于加快5G产业发展的实施意见和若干措施》(以下简称《措施》),到2022年底,山西省主要城市(含县城)城区实现5G 网络连续覆盖,山西省5G 基站累计达5万座,5G示范应用场景超过30个。在5G选址方面,《措施》提出每年3月,各市要对公共资源进行一个清单化的公布,其中包括一些机关事业单位,其工作绿地、道路、塔杆、灯杆等方面资源的公开。在耗电成本方面,电信
发表于 2020-11-17
通宇通讯:应用端快速普及,5G基站数量将继续增加
由于今年前三季度的业绩表现有些不如人意,通宇通讯也因此遭到部分投资者的质疑,在今年我国大规模加快进行5G建设的背景下,公司业绩为何不增反减。 据悉,通宇通讯专业从事基站天线,微波天线,射频器件,光模块产品及能源换电柜,充电柜产品的研发、生产及销售。回顾通宇通讯披露的三季度业绩报告,该公司在2020年1-9月实现营收11.97亿元,同比下滑10.16%;归属于上市公司股东的净利润6198.65万元,同比下滑31.92%。 11月7日,通宇通讯在深交所互动平台表示:“今年以来的业绩变化,主要是受新冠疫情影响,使得公司及上下游企业在年后的复工延迟,导致部分订单未能按时交付,而国外疫情持续未能得到较好的控制,使得公司
发表于 2020-11-09
通宇通讯:应用端快速普及,5G<font color='red'>基站</font>数量将继续增加
外媒关注:中国提前完成了5G基站建设目标
外媒称,疫情期间的宅生活令互联网需求大增,矿山、港口、医院等多个场景的5G应用模式使得5G光环闪烁。中国在9月底就开通了69万个5G基站,提前完成了今年50万基站的建设目标。据路透社北京10月31日报道,在5G终端和基站的建设已初具规模之际,让5G应用转化为数字经济及网络经济的现实生产力,中国距离这一目标还有多远?面对5G投资是否过于超前等疑问,中国有关部门不久前表示,适度超前建设是公共基础设施的普遍特点。目前5G进入了发展的关键阶段,应用推广是当前工作的重点。报道称,事实上,未来两到三年,中国5G建设发展还将处于持续上升阶段,在技术标准、网络建设,特别是应用探索方面,还有大量工作要做。工信部数据显示,今年前三季度,信息传输、软件
发表于 2020-11-03
至晟公司:5G微基站功放芯片量产,技术指标行内领先
 随着5G时代的到来,我国已进入5G规模部署阶段,移动通信基础设施也迎来全面更新。射频器件作为无线连接的重要组成部分,市场前景广阔,伴随新基建、物联网以及国产替代浪潮的兴起,国内优秀射频芯片厂商也在不断涌现。南通至晟微电子技术有限公司(以下简称“至晟公司”)成立于2016年,是一家专注于射频微波集成电路设计的高科技企业。近日,至晟公司最新发布的5G微基站GaAs末级功放产品已进入量产阶段,并通过知名通信设备商的系统应用验证。集微网近日采访了至晟公司合伙人陈吉和副总经理张苗,陈吉介绍到产品较国内外现有GaAs同类产品相比,具备大带宽(支持200MHz瞬时带宽)、大功率(峰值功率14瓦)的领先优势,并且在系统应用中线性和功耗
发表于 2020-10-30
至晟公司:5G微<font color='red'>基站</font>功放芯片量产,技术指标行内领先
为国争光,南通至晟公司5G微基站功放芯片已量产
随着5G时代的到来,我国已进入5G规模部署阶段,移动通信基础设施也迎来全面更新。射频器件作为无线连接的重要组成部分,市场前景广阔,伴随新基建、物联网以及国产替代浪潮的兴起,国内优秀射频芯片厂商也在不断涌现。 南通至晟微电子技术有限公司(以下简称“至晟公司”)成立于2016年,是一家专注于射频微波集成电路设计的高科技企业。近日,至晟公司最新发布的5G微基站GaAs末级功放产品已进入量产阶段,并通过知名通信设备商的系统应用验证。 集微网近日采访了至晟公司合伙人陈吉和副总经理张苗,陈吉介绍到产品较国内外现有GaAs同类产品相比,具备大带宽(支持200MHz瞬时带宽)、大功率(峰值功率14瓦)的领先优势,并且在系统应用
发表于 2020-10-30
为国争光,南通至晟公司5G微<font color='red'>基站</font>功放芯片已量产
MegiQ高品质射频和微波开发工具e络盟开售
安富利旗下全球电子元器件产品与解决方案分销商e络盟新增MegiQ多款射频和微波开发工具,进一步扩充其测试与测量产品线。e络盟是全球唯一一家供应MegiQ全系矢量网络分析仪和天线测量系统的高质量服务分销商,这些设备和系统被设计师广泛应用于开发、测试和检验无线通信设备和物联网设备。 MegiQ系列产品是业内价格最实惠的专业射频开发工具,适合物联网初创企业及希望配备多单元教学实验室的大学院校。MegiQ测量工具和附件不仅功能完整、简单易用且高度可靠,适用于绝大多数无线系统及微波频率高达6GHz的应用,例如:半导体、汽车、电信设备设计等领域的教学、研究和制造应用,可用作研发、产品检验及生产测试工作。 MegiQ的创新
发表于 2020-11-24
MegiQ高品质<font color='red'>射频</font>和微波开发工具e络盟开售
小广播
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 综合资讯 其他技术 下一代网络 短距离无线 基站与设施 RF技术 光通讯 标准与协议 物联网与云计算 有线宽带

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved