datasheet

手机射频功率控制环路设计

2008-06-13来源: 互联网关键字:控制电压  环路  功率控制  积分器  电流检测  时间常数  增益控制  手机射频  Vpe

  

  为了保证系统的容量及互操作性,GSM系统规范对手机发射功率的精度、平坦度、发射频谱纯度以及带外杂散信号进行了严格的规定,对手机射频功率放大器功率控制环路的设计提出了很高的要求。本文介绍了功率反馈控制法和电流检测反馈控制法,并对第一种方法给出了详细的设计步骤。

  GSM系统为时分多址(TDMA)系统,不同的用户在时间轴上被分隔开,每个用户在特定的一个时间间隔(时隙)内接收或发送信息。TDMA系统的该特性极大地提高了频谱利用率,同时也对移动台射频前端的设计提出了极大的挑战。GSM系统要求移动台的发射机以突发方式工作,即只在规定的时隙内开机发送信息,而在其它时隙则处于关闭状态。这种开关工作状态会使发射频谱内含有大量的杂散分量,严重影响其他用户。为保证系统容量和互操作性,必须对移动台发射机的指标提出要求,这在ETSI GSM 11.10系列规范中都有规定。

  

  

  图1 PVT 功率--时间模板

  为了达到规范要求,移动台发射机信号的上升沿和下降沿不能过于陡峭,而必须是一个缓升和缓降的过程,如图1所示。图中最上及最下两条曲线称为功率--时间模板,在测试时发射信号在每个时隙的功率--时间关系曲线不能超越这个模板,否则发射频谱纯度将不能满足要求,或者会丢失发射信息。中间曲线为射频功放的增益控制电压,由系统控制单元给出,用以控制射频输出功率。这要求能对发射机中的射频功率放大器实现精确的功率控制,同时,GSM移动台发射机根据系统要求也要能工作于几个功率等级上,这也要求精确的功率控制,为此必须采用反馈控制环路。实现功率控制的方法较多,比较常用的为输出功率检测反馈控制法,该方法直接检测射频输出功率,通过反馈环路实现闭环功率控制。另外一种方法为电流检测反馈控制法,它检测末级功放管的电流,再通过反馈环路实现对输出功率的控制。

  输出功率检测反馈控制法

  

  

  图2 功率控制环路的数学模型

  为便于分析,首先给出功率控制环路的数学模型,如图2所示。

  该反馈控制系统由五大部分组成:

  1. 比较器:该部件负责比较由系统指令单元送出的控制信号SC与反馈信号SF之间的差别,并乘以增益Ks,给出误差信号SE送到积分器,

  2. 积分器:由以下的分析将会看出,加入积分器的目的是为了使输出电压Vo仅取决于SC和反馈增益KcKd,而与放大器增益Ka无关,从而改善环路控制特性。

  3. 放大器:为射频功率放大器,增益可随外加控制电压的变化而变化,增益为Ka。当外加控制电压低于某一特定值Vthreshold时,放大器不导通,无输出信号。

  4. 耦合器:耦合器为一功率取样部件,可将少量的射频功率取出。增益为Kc=10[-CF/20],其中CF称为耦合系数。

  5. 检波器:检波器负责将耦合器送来的射频信号进行平均值检波,得到对应的直流电压SF作为反馈信号。检波器的增益为Kd。

  当控制环路闭合后,SC作为功率控制环路的一个输入来设定输出功率,Vo为功率放大器的输出,耦合器将一部分射频能量取出,经检波器变为反馈信号SF,然后与SC经比较器处理得到误差电压SE,再经积分器得到功率放大器的控制电压。这个过程可以表示为: Eq1 Eq2

  Vo对时间的变化率可表示为:公式3

  在稳态时dVo/dt=0,所以此时 Vo=SC/KdKc。这表明射频输出功率仅与控制电压和反馈支路的增益有关,而与Ka无关,这就是带有积分器的反馈控制环路的基本特性。

  输出功率检测反馈控制电路设计

  下面以图3所示的实例来说明功率控制环路的详细设计步骤。

  

  

  在图3中,D1、D2和R4组成双肖特基二极管检波电路,D1和D2配对使用可以补偿温度系数的影响,本例中检波器的增益为0.45(-7dB),可承受的输入信号范围为-20dBm--+20dBm。

  R5、C3及U1A组成比较器和积分器,负责比较检波器的输出和控制信号SC,得出误差电压SE并积分。

  图中增益Kc=10[-CF/20],其中CF为耦合系数。在整个环路的设计中,耦合器的选择及积分器时间常数的确定比较关键,前者选择不当会使耦合信号的幅度超出检波器工作的动态范围,而后者决定了环路是否能在规定的时间内完成开机锁定。GSM规范要求移动台的最小功率等级为5dBm,最大为33dBm(以上值均为天线处测量值)。而本实例电路中检波器能检测的最小功率为-20dBm,最大功率为20dBm。在功率控制环路开始工作的初始阶段,系统控制单元必须先给出一个较小的功率控制信号,使环路完成锁定,进入跟踪状态。这个初始功率控制信号称为Vpedestal。Vpedestal不能太大,GSM规范指出该值应比最小功率等级低1-6dB,这里选4dB进行计算:

  Vpedestal=(Pmin+Loss)-Pmargin=(5dBm+1dB)-4dB=2dBm

  其中Loss为功率放大器后接器件插入损耗。为了不使反馈的射频信号低于检波器的最低可检测功率,耦合器的耦合系数应留有余量,这里取余量安全因素(Safety Factor)为3dB,综合考虑以上因素,并在最坏情况下计算,可知:

  CF≤Ppedestal-Pmindet-Safety Factor

  = 2dBm-(-20dBm)-3dBm

  = 19dBm

  同时为了不使检波器过载:

  CF≥(Pmax+Loss)-Pmaxdet+Safety Factor

  =(33+1)dBm-20dBm+3dB

  =17dB

  其中Pmax为移动台最大发射功率等级(33dBm),Pmaxdet与Pmindet分别为检波器最大及最小可承受功率。

  GSM规范同时对功率控制环路的锁定时间提出了要求,见图2。

  在环路刚上电时,射频功放由于其增益控制端的电压没有达到Vthreshold,因此功放无功率输出,环路不闭合。这样积分器的输入就仅为SC,它需要一定时间进行初始化以便达到Vthreshold,使控制环路闭合。在开始的几个微秒时间里,系统指令单元输出一很小的电压Vpedestal,积分器不断对这个恒定电压进行积分,直到达到Vthreshold,功放有输出信号,使环路闭合,这时SC就可以走图中所示的台阶状曲线,直到达到稳定功率输出为止。

  从图中可知,这一时间实际上就是Vpeddstal状态持续的时间,规范中规定为8微秒。在这段时间中,环路必须利用给出的初始控制信号Vpedestal完成锁定,这实际上对积分器时间常数的选取提出了要求。根据一阶环路的特性,锁定时间可由下式近似得到:

  Tlock=Vthreshold×C×R/Vpedestal

  为加快环路的锁定,可在积分器的输出端加入“粗调”电压Voffset,与积分器的输出一起组成功率放大器的控制电压,这是通过图3中的U2A来实现的。此时环路锁定时间变为: Tlock=(Vthreshold-Voffseet)×C×R/Vpedestal

  电流检测反馈控制

  功率控制方法为电流反馈控制型,它是通过检测末级功放管的电流来实现功率控制的,如图4所示。

  

  

  对应不同的输出功率,射频功放向电源索取不同的电流,从图中可以看出,电流取样电阻检测电流的这种变化,作为反馈信息与SC比较并积分得到功放控制电压,从而实现输出功率的闭环控制。

  该方法的好处是可以节省元器件(耦合器,检波器及相关外围器件),并简化系统设计。但由于该方法不是直接检测输出功率,射频功放的电流与输出功率的关系比较复杂,与很多时变因素有关,因此控制精度不及功率检测法高。

  本文小结

  GSM规范11.10对移动台发射机功率控制环路的精度,跟踪速度和稳定性提出了很高的要求。目前,采用耦合器-检波器的功率检测法,是最常用也是性能最好、适用范围最广的一种功率控制方法。为了保证回路的性能,必须仔细考虑检波器的动态范围和热稳定性、耦合器的选择、积分器时间常数的选择,以及加入“粗调”电压等。

 

  

 

关键字:控制电压  环路  功率控制  积分器  电流检测  时间常数  增益控制  手机射频  Vpe

编辑:孙树宾 引用地址:http://news.eeworld.com.cn/xfdz/2008/0613/article_315.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:WCDMA 发射机原理及Maxim WCDMA参考设计
下一篇:利用DC-DC电源提供的变化Vcc改善RF功放效率

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

高功率应用的高电压、高功率开关电容电源控制芯片

DC/DC 转换器的功率密度通常受到体积庞大的磁性元件的限制,特别是在输入和输出电压相对较高的应用中。通过提高开关频率可以减小电感/变压器的尺寸,但因开关切换引起的损耗也会造成转换器效率降低。更好的方法是采用无电感开关电容电源 (电荷泵) 拓扑完全消除磁性元件。与传统DC/C电源相比,电荷泵可在不牺牲效率的情况下将功率密度提高 10 倍之多。飞跨电容代替了电感存储能量并将其从输入端传递到输出端。尽管电荷泵设计具有优势,但由于启动、保护、MOS管门极驱动等方面存在挑战,开关电容电源历来局限于低功率应用。 LTC7820是一款固定转换比例、高电压、高功率开关电容电源控制芯片,可为高功率、非隔离中间总线应用提供具有
发表于 2019-05-15
高功率应用的高电压、高功率开关电容电源控制芯片

PLL+VCO集成电压控制振荡器的锁相环技术应用

新兴的PLL + VCO (集成电压控制振荡器的锁相环)技术能够针对蜂窝/4G、微波无线电防务等应用快速开发低相位噪声频率合成器,ADI集成频综产品的频率覆盖为25 MHz到13.6 GHz。 蜂窝/4G、微波无线电、测试设备和防务子系统应用的无线电设计人员依赖高质量本振(LO)来实现低BER(误码率)、低杂散输出和低相位噪声的系统级目标。所有的RF和微波通信和传感器系统,无论是基于模拟还是数字调制,都需要干净的LO信号源;无线电的容量越高,对LO信号的要求就越高。 有许多不同架构可用,但产生稳定LO源的最常用方法之一是将低相位噪声电压控制振荡器(VCO)和稳定基准电压及锁相环(PLL)组合构成频率合成
发表于 2019-05-07
PLL+VCO集成电压控制振荡器的锁相环技术应用

51单片机使用定时器中断模拟PWM控制端口电压

  最近应实验室需求写一篇51单片机产生PWM的文章供参考.  单片机芯片STC89C52,晶振12MHz,编译环境Keil5.  分析:若使单片机端口为高电平, 则单片机输出电压为恒值5V. 反之低电平输出电压为0V. 但是我们如果在周期为T的时间内使单片机高电平出现t1秒, 低电平出现t2秒, 那么在周期内, 高电平出现的时间为, 低电平时间为. 由于周期T的时间极短, 那么在连续的时间t内, 相应端口输出电压为.  实验使用定时器0, 定时器0由两个寄存器进行控制,分别为定时器/计数器工作方式寄存器TMOD,  定时器/计数器控制寄存器TCON.TMOD是一个八位寄存器,如下
发表于 2019-01-26
51单片机使用定时器中断模拟PWM控制端口电压

基于单片机控制的数字电压表

同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本设计重点介绍单片A/D转换器以及由它们构成的基于单片机的数字电压表的工作原理。    2总体设计方案    2.1设路计思路    按系统功能要求,决定控制系统采用AT89S51单片机,A/D转换采用ADC0809.系统除能确保实现要求的功能外,还可以方便地进行其功能的扩展。本文采用AT89S51作为核心元件,AT89S51是一个低功耗,高性能CMOS8位单片机,片内含4kBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件
发表于 2018-04-13
基于单片机控制的数字电压表

电压模式、迟滞或基于迟滞三种控制拓扑怎样选择?

每一位电源工程师都熟知并学习过电压模式和电流模式控制这些传统的控制拓扑,但却不太了解基于迟滞的拓扑及其优势。虽然纯迟滞控制对于诸如医疗或工业自动化等特定应用可能并不实用,然而许多比较新的电源拓扑都是基于迟滞的,并且拥有旨在克服纯迟滞控制的缺陷的额外特性。此类拓扑被运用于从处理器内核供电到汽车系统等广泛领域。几乎所有的电源均是专为提供一个稳定的输出电压或电流而设计的。提供这种输出调节功能需要一个闭环系统和即将被调节的输出电压或电流的反馈。尽管有很多种用于对可用反馈环路进行补偿的不同控制拓扑,但它们通常都可以被归为两类:脉宽调制 (PWM) 或迟滞。在这两种基本拓扑的基础上演变出了第三种拓扑,其为此二者的融合:基于迟滞的拓扑。针对
发表于 2018-01-30

面向车载用途 不需要外接零部件、附带看家狗功能 ON/OFF 控制端子的电压检测器 符合AEC-Q100(Grade3)

的范围中,选择5 种解除延迟时间。采用了通用性强的SOT-25封装。特瑞仕今后会迅速开发适用于小型、超薄的应用的产品、为实现丰富的社会做更大贡献。【XD6121/XD6122/XD6123/XD6124系列产品的特长】・ 低消耗电流、不需要用于设定延迟时间的外接零部件・ 附带ON/OFF功能・ 看家狗超时时间:能在50ms~1.6s的范围内选择6种・ 解除延迟时间:能在3.13ms~400ms的范围内选择5种以上是关于半导体中-面向车载用途 不需要外接零部件、附带看家狗功能 ON/OFF 控制端子的电压检测器 符合AEC-Q100(Grade3)的相关介绍,如果想要了解更多相关信息,请多多关注eeworld,eeworld电子工程将给
发表于 2017-07-25

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved