用可编程DSP实现802.16 PHY信号处理

发布者:SHow111time最新更新时间:2008-10-23 关键字:DSP  802.16  无线 手机看文章 扫描二维码
随时随地手机看文章

  IEEE802.16标准的各个版本都规定了PHY(物理层)的多种选项,包括调制、信道编码和天线分集技术。物理信道带宽可以在1.25 MHz~20 MHz之间变化。上述所有选项都会影响基站的性能和信号处理复杂度。

  许多客户希望提供一种可以从802.16-2004升级到802.16e标准的方法。上述需求以及对支持互通性(成功部署新标准的关键)的需求,都要求基站的PHY采用可编程的信号处理器件。

用可编程DSP实现IEEE 802.16 PHY信号处理

  图1为802.16基站基带信号链路基本框图。

  因为802.16-2004和802.16e标准都是在OFDM基础上建立的,所以FFT和IFFT起了很大的作用。这两种变换都用于频域副载波(携带编码的数据位)和时域采样(在物理通道上传送)之间的转换。一次IFFT的输出被称为一个OFDM符号。按照这种方式进行通信,OFDM系统可以实现抗多径干扰,各副载波之间几乎或者完全无干扰,并且具有相当低的复杂度。

  与FFT密切相关的是信道均衡,它包括大量的MAC运算,还包括客户专用的复杂算法,以便恰当地估计信道和表征结果,尤其是在具有移动性的系统。

  同步模块在测距期间起作用,基站通过此模块获得新用户的信号,并且调整现有用户的定时(通过反馈来调整)。同步通常是通过计算接收信号与已知前同步信号的相关性,或自动计算接收信号与其自身延迟信号的相关性实现的,利用该信号确定的周期性属性,然后将得到的相关性结果通过一个检测器,以便确定是否有信号送到,如果有,确定其精确定时。

  同步操作既需要MAC运算,也要求具有较高的灵活性。 例如,处理一个20 MHz的信道时,在10s的窗口中计算一段有64个采样数据的相关性则需要14,000次复数MAC运算,大约比256点FFT运算提高了一个数量级。但是,上述MAC的精度通常可以简化为用8 bit实数和复数乘以1 bit的实数和复数。这种简化的MAC可以在TigerSHARC处理器中实现,也可以在FPGA中实现。另一方面,检测器可能包含比较智能的用户专用算法,也可能需要C语言程序。

  802.16标准支持高数据速率(70 Mbps左右),有多种信道编码选项。必备方案是卷积码(在802.16-2004标准中,还要结合里德-所罗门(RS)码),卷积turbo码、turbo乘积码,以及802.16e标准中的低密度奇偶校验码都是可选的。

  信道解码的高数据速率超出了传统DSP体系结构的能力。可能的实现方法有专用指令、硬件加速器和可编程逻辑器件。除了本身计算的高复杂度,基站体系结构必须具有相当大的数据带宽和存储器,以便支持更先进的解码方案。

  人们期望基于802.16e标准的系统实现多天线处理,它增加了两级的复杂度。首先,信号链中的几个模块,特别是FFT和IFFT,必须为每个天线流都复制一份。其次,系统必须为不同的天线流计算出并选取适当的权重,以满足诸如最大信号干扰比的要求。

  在802.16e系统中,允许在同一个OFDM符号中复用多个子信道(因此称为OFDMA),从而增加了对可编程性的需求。虽然802.16-2004系统通常不需要每次处理一个OFDM符号,但是802.16e增加了子信道、副载波和OFDM符号之间的复杂映射,包含了几种可能的排列。这就增加了更多的总控制码和存储器访问,并且提高了调度处理任务的复杂度。另外,应该有一种体系结构支持升级以便增加功能,例如混合ARQ(自动重传请求)和MIMO(多输入多输出天线处理)。

  为基站PHY提供的可编程技术包括DSP、FPGA以及可重复配置的逻辑器件。DSP的优势就是C程序和低功耗,但是传统的DSP不具有上述一些算法所要求的计算密度。为了弥补此缺陷,现代的处理器增加了专用指令和协处理器等功能。某些最新的DSP设计还支持大容量的片内存储器和很高的I/O存储带宽,这在实现诸如802.16标准的实时PHY时是至关重要的。虽然FPGA可以达到上述算法所需要的计算密度,但是如果完全采用FPGA解决方案,其编程模式可能无法完全实现复杂的控制功能。可重复配置的逻辑器件试图通过由常用的异构处理元件组成的一种结构来发挥DSP和FPGA的组合优势,但是其技术的成熟度和编程的易用性还存在问题。

  考虑到上述需求和当前的处理器发展情况,适合802.16基站PHY的合理解决方案是采用双重方法。对于基本的系统,完全采用DSP解决方案可以提供必需的计算资源,同时提供方便的编程模式。对于具有更宽的信道带宽或较多天线数量的高级系统,应当采用DSP和FPGA的组合方案。采用这种方法,PHY可以保持类似的编程模式,同时将一小部分计算量大的功能分配给FPGA,例如信道编码。这两种体系结构都具有增加功能、升级软件以及移植到新版本标准的灵活性。

关键字:DSP  802.16  无线 引用地址:用可编程DSP实现802.16 PHY信号处理

上一篇:基于TMS320DM642的编程
下一篇:基于DSP的小型直流风扇自动化测试系统

推荐阅读最新更新时间:2024-05-02 20:42

MCS-51单片机与无线调制器的应用
GPS是目前技术上最成熟且已实用的一种定位系统,但是在GPS定位系统中,由于其是一个单向导航系统,他是把星历数据等传给地面接收机,可在许多具体应用时,例如在车辆调度系统中,一般都需要把利用GPS测得的信息数据传到调度中心,由于其系统由一个基准站和多个用户台组成,基准站与用户台之间的联系,即由基准站计算出的各种校正值发送到用户台,上边这一切都需要用到数据链来完成数据的传输。其中,数据链由调制解调器和电台组成。在无线数据传输系统中,调制解调器足一个关键部分,调制解调器(Modem)是将数据进行编码和调制,然后输入到电台发射出去,用户台将其接收下来,并将数据解调后,送入GPS接收机进行改正。本文介绍了单片机控制Modem的原理和方法。
[工业控制]
MCS-51单片机与<font color='red'>无线</font>调制器的应用
解决补能难题 汽车无线充电离我们有多远?
手机无线充电早已普及,汽车无线充电还要等多久?近期法国就为纯 电动汽车 铺设了一段长达2公里的无线充电道路,车辆无论是在行驶还是停止状态下,都可以进行充电。无独有偶,中国一汽近期在其科技创新基地内也推出了一条高功率动态无线充电道路系统,可为行驶中的纯电动车进行实时充电。从缓解补能焦虑到改善充电体验,不难发现,继换电、超充后,汽车无线充电正在悄然到来。 汽车无线充电并非噱头 乃是大势所趋 随着 新能源汽车 的迅猛发展,市场份额不断提升。据官方数据统计,截至2023年6月底,全国新能源汽车保有量超过1620万辆,平均每2.5辆新能源车拥有一根充电桩,但由于公共充电桩分布不均,“找桩难”依旧困扰着不少新能源车主,补能焦虑问
[汽车电子]
解决补能难题 汽车<font color='red'>无线</font>充电离我们有多远?
科学家研发便携超声波探头 和智能手机进行无线通信
通常情况下,医疗超声成像系统又大又笨重,必须用推车推着走。然而,新的Vave探头可以放在口袋里,并与智能手机配对使用。该设备由总部位于加州的公司Vave Health创建,是首席执行官Amin Nikoozadeh的心血结晶。它源于他对成像系统小型化的研究,这是他在斯坦福大学攻读电子工程专业时的博士研究的一部分。   这款340克的设备采用了压电微机械超声换能器、有助于散热的铸镁机身和硅胶手握套。据报道,其可拆卸式锂离子电池充电4小时,可连续扫描1小时以上。   Vave还具有IP67防水性能(可下潜至1米/3.3英尺,持续半小时),这意味着整机可以定期浸泡和消毒。用户可以在心脏、肺部、腹部和OB/GYN(产科/妇科)四
[手机便携]
预测2008年需要关注10大技术及其应用
  新技术就像礼物,年年都有。虚拟化正给解决方案供应商该来销售和利润增长,现在还无法看到虚拟化的热潮何时结束。虚拟化将IT解决方案的优化深入到第N层,你可对从服务器到存储器到应用程序的所有方面都进行虚拟化。这是自从dot.com大爆炸以来出现的对游戏规改变最大的技术。哈利路亚,赞美上帝,虚拟化就是从天而降的吗哪(《圣经》故事所述,古以色列人经过荒野所得的从上帝而来的天赐食物)。   软件即服务(SaaS)带来的微软Office软件的杀手   如果非要为小型企业采用软件即服务(Software-as-a-Service, SaaS)找一个原因,那就是以购买微软公司的Office办公软件成本的一小部分就能获得相应的功能。如果你是一家
[焦点新闻]
探析SoC(片上系统)的未来之路
  SoC的理想境界是具有普遍性且具高度定制性,在这种条件下,SoC的技术越来越具有多样化。   预计到2011年,全球消费类电子系统芯片产量将增长到17.7亿元,复合年成长率为6.9%。这一数据反映出消费类IC市场正进入“更加成熟的阶段”,视频处理、视频合成、人工智能等技术的应用,将为该领域的成长提供核心动力。   Gartner Dataquest副总裁兼首席分析师Bryan Lewis指出,在历经数年摸索后,SoC的架构已逐渐明朗,他称之为第二代SoC。Bryan表示,这一代的SoC已走向混合型的架构,也就是除了功能的多样性外,也尝试采用混合型的制程技术。   第二代SoC的另一项特征在于次系统的独立性与平行工作,也就
[焦点新闻]
vivo 发布逆光和夜景拍照黑科技,DSP芯片来自瑞芯微
今日,“2017世界移动大会-上海”在新国际博览中心隆重开幕。其中,vivo 在这次展会上发布多项黑科技。除了此前备受关注极具未来感的“隐形指纹”功能外,还有一项“DSP拍照技术”的黑科技发布。 据悉,此次vivo推出是基于独立DSP芯片的“DSP拍照技术”,能解决消费者在暗光、逆光等各种复杂光线条件下拍照效果差的痛点。据集微网了解,vivo的这个双核DSP型号为“RK1608”,与国内知名IC厂商瑞芯微共同研发,基于CEVA的图像和视觉DSP技术,采用拥有256MB内存,可以快速抓取5张图片,利用高达10倍处理速度合成为一张高品质照片,综合处理速度比普通手机提升3倍。 在消费者日常的手机拍摄体验中,除了白天或者光照较好的情
[手机便携]
基于DSP的机载远程投放控制终端设计
摘要: 针对导弹研制靶场试验的需求,设计了一种基于DSP的机载远程投放控制终端,用于红外干扰源的投放控制。给出了控制终端的组成结构,重点介绍硬件设计及软件设计,通过在线编程技术方便投放模式的远程加载,使用特定的数据帧编码原则提高了无线数据传输的可靠性。多次的外场靶试试验验证了系统设计的通用性和工程实用性。 关键词: 远程投放;控制终端;DSP;在线编程;数据帧编码原则 0 引言 导弹研制过程中为考核其抗干扰性指标,需要在靶机上加装红外干扰源的投放装置,在靶机起飞后的特定时间段内,按一定的投放序列完成红外干扰弹的投放,在靶机周围形成与靶机红外辐射特征相似的红外辐射源,对导弹进行干扰。 以往使用的投放装置,其投放模式基
[嵌入式]
基于<font color='red'>DSP</font>的机载远程投放控制终端设计
电动汽车无线充电的好处有哪些?电动汽车无线充电原理
电动汽车无线充电的好处有哪些? 电动汽车无线充电(Wireless Charging)相对于传统有线充电方式,具有以下一些好处: 1. 便捷性:无线充电消除了插拔充电线的麻烦。只需将车辆停放在充电设备的范围内,即可自动进行充电。无需与充电桩连接,享受更方便的充电体验。 2. 提升车辆安全性:无线充电通过电磁感应的方式进行,无需直接接触金属插头和插座,减少了插拔操作中可能出现的安全隐患,如触电风险或线损导致的火灾风险。 3. 提高充电效率:无线充电系统采用高效的电磁感应技术,可以提供高效率的能量传输。而且无线充电设备通常具备智能化管理,可以根据车辆实际需求进行能量传输调整,提高能量利用效率。 4. 减少电缆损坏和维护成本:传统有线充
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved