用CPLD实现FIR数字滤波器的设计

发布者:JoyfulSerenade最新更新时间:2011-07-07 关键字:FIR  数字滤波器 手机看文章 扫描二维码
随时随地手机看文章
   

    当前,无论在军事还是民用方面,对于数字信号处理的实时性、快速性的要求越来越高。可编程逻辑器件(PLD)由于在速度和集成度的飞速提高,越来越多的电子系统采用可编程逻辑器件来实现数字滤波。

    Altera公司的FLEX10K是工业界第一个嵌入式的PLD,具有高密度、低成本、低功率等优点。器件的主要结构特点是除主要的逻辑阵列块(LAB)之外,首次采用了嵌入阵列块(EAB)。每个阵列块包含8个逻辑单元(LE)和一个局部互连。一个LE又由四输入查找表(LUT)、一个可编程寄存器和专用的载运和级联功能的信号通道所组成。

    在FLEX10K器件中,把每一组逻辑单元(8个LE)组成一个逻辑阵列块(LAB),所有的逻辑阵列块(LAB)排成行和列。在一行里还包含一个单一的EAB。多个LAB和多个EAB采用快速通道互相连接。

    嵌入式阵列块(EAB)是FLEX10K系列器件在结构设计上的一个重要部件。它是一个输入端口和输出端口都带有寄存器的一种灵活的RAM块,嵌入阵列块(EAB)组成的规模和灵活性对比较多的内存是适宜的。功能包括乘法器、向量的标准和误差矫正电路等。在应用中,这些功能又能够联合完成数字滤波器和微控制器的功能。

    采用可编程的带有只读平台的嵌入阵列块(EAB)在配置期间可执行逻辑功能并建立一个大的查找表(LUT),在这个查找表里用查找的结果执行组合逻辑函数,而不用计算它们。显然,用这种组合逻辑函数执行比通常在逻辑里应用算法执行要快,而且专用EAB容易应用,并且快速提供可能预测的延迟。

    本文介绍了应用Altera 公司的FLEX10K系列CPLD快速完成卷积的方法实现有限冲激响应(FIR)滤波器的设计。

查表法实现卷积运算方法

    有限冲激响应(FIR)滤波器的基本结构如是一个分节的延时线,把每一节的输出加权累加,得到滤波器的输出。数学上表示为:

结构如图1所示。它由用一条均匀间隔抽头的延迟线上对抽头信号进行加权求和构成。

    根据上式,可以看出FIR数字滤波器涉及到大量的卷积运算,使用常规硬件实现时会占用大量的资源。通过充分利用FLEX10K系列芯片所具有的查表结构,将卷积运算转化为查表移位求和来实现。例如:对于式

y = [ x(1) h(1) ]+[ x(2) h(2) ]+[ x(3) h(3) ] + [ x(4) h(4) ] (1)

假设x和h 都是无符号整型二进制数,宽度两位,取值两位如下:

h(1)= 01,h(2)= 11 ,h (3)= 10, h(4)= 11

x(1)= 11,x(2)= 00, x (3)= 10, x(4)= 01

    从图2可以看到式(1)运算的实现。中间数据p1(n)中的4个数据实际上是乘数x(n)的最低位比特与h(n)相乘的结果,并且该值不是0就是h(n)。进一步考虑,中间数据p1和p2的值,既“100”和“011”是由不同的h(n)之和构成,而对h(n)的选择是由乘数x(n)的相同位的比特决定的。例如上图x(n)的最低位为1001,则p1的值为h(1) + h(4);其高位为1010,则p1的值为 h (1) + h(3)。因此利用Altera公司FLEX器件中的查找表(LUT)结构,预先将h(n)的各种组合存入查找表,则上例中的原需4次乘法 和3次加法的卷积运算转化为1次加法。图3显示了用查找表实现该例的结构。



    用查表法实现卷积运算时,有并行和串行两种结构。图3中为并行结构,其中两个LUT是完全相同的。在并行结构中,LUT的数量根据x(n)的数据宽度决定。一位对应一个LUT,这样速度达到最大,在FLEX10K的结构中提供了两条专用数据通道,即进位链和级联链,通过级联链相邻的LUT可以用来并行计算函数的各个部分。

利用FLEX10K芯片实现FIR数字滤波器

    FELEX10K系列芯片具有查找表结构,利用其实现采用全局并行的FIR数字滤波器,也即将输入x(n) 经过不同的延迟后同时进行处理。

FIR数字滤波器的层次结构图如图4所示:

    控制器模块(contr)的作用是产生控制信号对延迟、并串转换、抽头系数、移位相加模块进行控制,以使它们按一定的形式组合在一起实现滤波器功能。控制器模块在接收到A/D转换结束信号后,依次产生移位寄存器使能信号、并行到串行转换的装入信号、移位相加的装入信号、加减控制信号和滤波结果输出信号等各种控制信号,使上述各个模块按照一定的时序进行操作,从而完成滤波功能。时延环节模块(shift-reg)的作用为使A/D转换后的数据通过不同的触发器,进而产生不同的延迟。并/串转换模块(p-s-ff)的作用是将通过时延模块产生的不同延迟分别同时转换为查找表的串行地址,提供给抽头系数模块。抽头系数模块(sub-rom)将抽头系数的各种组合固化在ROM中。它的地址输入端接收并/串转换模块的串行输出,然后查表得到卷积的中间数据.。移位相加模块通过将中间数据移位相加而实现两个数相乘的功能。

关键字:FIR  数字滤波器 引用地址:用CPLD实现FIR数字滤波器的设计

上一篇:基于FPGA的100G光传送网设计
下一篇:基于CPLD/FPGA高速数据采集系统的设计

推荐阅读最新更新时间:2024-05-02 21:28

基于频率采样法的FIR滤波器的设计及仿真
  有限长脉冲响应(FIR)数字滤波器由于设计灵活,滤波效果好以及过渡带宽易控制,因此在数字信号处理领域得到了广泛的应用。FIR数字滤波器的典型设计方法主要有窗函数法和频率采样法。正确理解和掌握这两种设计方法是学习FIR数字滤波器的一个重要环节。用窗函数法进行FIR滤波器设计的相关问题,目前的教材讲解较为细致,这里不再赘述。本文主要探讨用频率采样法设计FIR数字滤波器的相关问题,主要包括设计原理、性能分析、线性相位条件及设计中应注意的问题等几个方面。    1 设计原理及滤波器性能分析   频率采样法是从频域出发,对给定的理想滤波器的频响 进行N点等间隔采样,即 ,然后以此Hd(k)作为实际FIR滤波器的频率特性采样值H(k)
[模拟电子]
DA算法的FIR滤波器设计
1.引言 在数字信号处理系统中,FIR数字滤波器多采用专用DSP芯片(如TMS320CXX系列),这种基于DSP的处理系统存在很多优点,比如方案灵活、可操作性强、程序易于移植。但这种结构的滤波器多是根据FIR 滤波器的数据移位相乘累加的算法编写相应软件,利用软、硬件相互结合完成滤波器的设计。由于软件运行时,指令都是串行执行的,这严重制约了系统的运行速率,不能满足高传输速率,大数据吞吐量的数字信号的实时性处理要求。而基于DA算法的FPGA滤波器则是一种采用纯硬件的方式实现FIR 滤波器的方式,这种方法突出的优点是运算速度快,特别适合在高速、实时、快变的数字信号处理要求。 2.DA算法的基本思想 第一个讨论分布式算法
[嵌入式]
DA算法的<font color='red'>FIR</font>滤波器设计
基于脉动阵列的FIR滤波器设计
1 引 言 有限长冲激响应(FIR)滤波器在数字信号处理中是一种基本的处理单元。无限长单位冲激响应(IIR)数字滤波器的优点是可以利用模拟滤波器设计的结果,但其缺点是不具有线性相位性。图像处理以及数据传输都要求信道具有线性相位特性,FIR滤波器可以做成严格的线性相位,避免被处理信号产生相位失真,还可以具有任意的幅度特性。此外,FIR滤波器的单位冲激响应是有限长的,因而滤波器一定是稳定的。 在数字滤波器的研究中,已经提出多种FIR滤波器的设计和实现方法,如并行结构、流水线结构、分布式结构等 。FIR滤波器计算量大,且要求实时实现。如何提高速度以满足信号处理的高效性和实时性一直是人们研究的重点和热点。脉动阵列是一种新型的流水线结构
[应用]
FIR滤波器
FIR(FiniteImpulseResponse)滤波器,全称为有限长单位冲激响应滤波器,又称为非递归型滤波器,是数字信号处理系统中最基本的元件。它可以在保证任意幅频特性下,同时具有严格的线性相频特性,且其单位抽样响应是有限长的,故滤波器是稳定的系统。因此,FIR滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。 工作原理 在进入FIR滤波器前,首先要将信号通过A/D器件进行模数转换,把模拟信号转化为数字信号;为了使信号处理能够不发生失真,信号的采样速度必须满足 香农采样定理 ,一般取信号频率上限的4-5倍做为采样频率;一般可用速度较高的逐次逼进式A/D转换器,不论采用乘累加方法还是分布式算法设计FIR滤波器, 滤
[单片机]
基于FPGA的高速FIR数字滤波器的设计
1 引 言 目前FIR滤波器的实现方法主要有3种:利用单片通用数字滤波器集成电路、DSP器件和可编程逻辑器件实现。单片通用数字滤波器使用方便,但由于字长和阶数的规格较少,不能完全满足实际需要。使用DSP器件实现虽然简单,但由于程序顺序执行,执行速度必然不快。 FPGA有着规整的内部逻辑阵列和丰富的连线资源,特别适合于数字信号处理任务,相对于串行运算为主导的通用DSP芯片来说,其并行性和可扩展性更好。但长期以来,FPGA一直被用于系统逻辑或时序控制上,很少有信号处理方面的应用,其原因主要是因为在FPGA中缺乏实现乘法运算的有效结构。本文利用FPGA乘累加的快速算法,可以设计出高速的FIR数字滤波器,使FPGA在数字信号处理方面有
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved