0 引 言
陀螺仪是平台稳定系统的敏感测量元件,它敏感台体的角运动信号,通过平台伺服回路,建立平台的稳定基准。因此陀螺仪的性能直接影响到平台稳定系统的性能,对严格测试其动态性能指标具有重要的意义。
传统的测试设备和手段复杂且效率低,为了便于对陀螺仪进行机内测试,改善测量效果,运用当今主要工业控制计算机技术——嵌入式PC/104总线结构来搭建测试系统,其独特的堆栈总线扩展方式,可使其具有体积小、功耗低、可靠性高等特点;其次,利用美国NI公司开发的虚拟仪器LabVIEW,为开发平台设计软件,使其人机界面友好、功能强大、开发效率高、可维护性强,且测试精度和可靠性能得到充分保证。
1 测试系统硬件组成
该测试系统由PC/104工控计算机、DMM-32-AT多功能数据采集卡、信号调理模块组成。其测试系统组成框图如图1所示。
(1)PC/104工控计算机。采用DIGITAL-LOG-IC AG公司的MSMP3SEV,它是一个基于PC/104(ISA总线)和PC104/Plus(PCI总线)的高可靠ALL-IN-ONE CPU模块,主板主要集成了最大256 MB内存、256 KB二级高速缓存、2个RS 232C 串口、1个LPT1并口、EIED硬盘接口、标准软盘接口、CRT显示器接口、平板显示器接口、鼠标接口、1个USB接口、看门狗计数/定时电路等。
(2)DMM-32-AT多功能数据采集卡。4路12位D/A模拟输出,16位差分或32位单端16位模拟输入,24路数字I/O端口,最高采样速率为200 Mb/s。该多功能采集卡主要用于激励信号的产生,测试信号的采集以及控制信号的产生。[page]
(3)信号调理模块。主要是将计算机给定的电压控制信号变换为电压或电流信号,对动态测试的激励信号进行整形、放大、滤波,以及对测试信号进行滤波,再由数据采集卡进行采集和处理。
系统的工作原理为:由PC/104控制,通过DMM-32-AT的D/A端口产生测试信号,经过调理,对陀螺仪力矩器施加指令电流信号,以模拟陀螺仪输入轴的角运动,使力矩器产生一个力矩,引起陀螺仪自转轴发生偏转。这时信号器输出一个电压,经放大器后转换成一个电流输入到力矩器,使力矩器内原来外加电流减小到零,使转子自转轴处于平衡状态。通过信号调理模块对信号器上的电压进行变换,由A/D采样模块进行采样,输入到PC/104工控机,系统再对采集数据进行处理、判断和显示。这整个过程是由程序控制自动完成的。
2 软件设计
陀螺仪的动态测试软件采用LabVIEW软件进行设计,LabVIEW不仅是软件开发环境,而且是一个编程软件,它是一种适合应用于任何编程任务,具有扩展函数库的通用编程语言。它定义了数据模型、结构类型和模块调用语法规则等编程语言的基本要素,在功能完整性和应用灵活性上不亚于任何高级语言。Lab-VIEW提供了丰富的数据采集、分析和存储库函数以及包括DAQ,GPIB,PXI,VXI,RS 232在内的各种仪器通信总线标准的所有功能函数。但是LabVIEW所提供的功能仅能驱动NI公司支持的数据采集卡,DMM-32-AT是第三方数据采集模块,它需要用户自己设计开发驱动程序。
2.1 DMM-32-AT驱动程序的实现
LabVlEW提供了对外部代码调用的接口库函数。其中,调用库函数(Call Library Function,CLF)节点使得用户可以方便地调用标准共享库和自定义库函数。在此,设计的数据采集系统就是通过LabVIEW提供的。CLF实现对动态连接库(Dynamic Link Library,DLL)调用的方法.完成对第三方数据采集模块的驱动,实现LabVIEW与普通数据采集模块的结合。
使用VC++生成一个dmm32driver.dll的动态链接库,通过CLF节点对其调用,以实现该数据采集卡的驱动,该程序实现的主要源代码为:
需要注意的是,在头文件中加入extcode.h,以便在DLL程序中使用LabVIEW中的数据类型,避免在传递参数和返回值时冲突。其次,需要在导出的函数原型前添加_declspec(dllexport)关键字,指出函数的出口。由此,可从一个动态链接库文件中输出数据、函数、类以及类成员函数而不需要.def文件。
[page]
2.2 数据采集流程
该测试系统采用如图2所示的单线程循环软件架构。采用单线程结构可以保证每个任务在一次数据采集循环中都能得到有效执行,既能满足数据的实时采集,又能保证数据的完整存储,增强了测试的可靠性。与此同时,采用单线程结构也简化了流程控制,避免了多线程结构中各个任务之间的调度与控制的复杂问题。
2.3 系统程序设计
虚拟测试系统的主要功能是实时接收数据采集卡采集的数据,进行数据处理(如滤波,FFT变换等)、数据存储和数据实时显示。操作者根据数据判断测试指标是否合格。
程序设计的数据采集过程为:在开始数据采集后,DAQ卡不断地采集数据,并将它们存贮在指定的缓冲区中;然后LabVIEW每隔一段时间,将一批数据送入计算机进行处理。如果缓冲区存放已满,DAQ卡就会又重新从内存起始地址写入新数据,覆盖原来的数据。这个过程一直持续,直到采集到了指定数目的数据点,或者中止采集过程。程序方框图如图3所示。在对陀螺输出信号进行测量时,采用了多次采样取平均值的方法,以减小误差。
3 结 语
在此,提出一种基于PC/104的陀螺仪动态测试系统,并分析该测控系统的软/硬件基本构成。在系统组建过程中,由于利用了可靠的PC/104工控机和数据采集卡,以及高性能的虚拟仪器编程软件,使得系统组建效率高,性能可靠,而且可以方便地对测试结果进行判断,简单易用。
关键字:陀螺仪 动态测试
引用地址:
基于PC/104的陀螺仪动态测试系统设计
推荐阅读最新更新时间:2024-03-30 22:17
传苹果有意在下一代iPad中引入陀螺仪功能
据UBM TechInsights一位分析人士透露,苹果公司的ipad显然曾经有用过InvenSense公司的一款三轴陀螺仪进行测试,但苹果可能计划在未来推出的平板电脑中使用来自意法半导体公司的一款相类似的陀螺仪。 iPhone 4为苹果公司第一款使用了三轴陀螺仪的智能手机,它使用的是来自意法半导体的L3G4200D——该芯片设计用于提供更详细的位置信息(相比加速度计和GPS)。 UBM TechInsight产品经理Steve Bitton表示,在iPhone 4用到了陀螺仪的情况下,如果差不多同一时期设计的iPad在设计时却没有用到陀螺仪,那这会是一件很奇怪的事。Steve Bitton曾拆卸解过一台iP
[传感器]
整车照灯照明性能试验动态测试方法
摘 要: 为了满足汽车前照灯照明性能测试和评估的需要,提出了整车级动态测试方法。首先,构建了集定位,数采和分析功能为一体的试验系统,并根据国家有关法规标准和中国道路的实际状况,制定出详细的试验要求,试验场景、测试步骤及测试指标并采用实车试验对该方法进行检验。研究表明:不同型号前照灯照明性能在既有规定约束下呈现较为明显差异,其实际效果很难达到驾驶员照明安全要求。文中所提方法对以法规,车辆为主的新评价规程具有一定借鉴意义。 目前汽车行业日益重视对乘员及行人安全的防护,尤其是夜晚或者光线较差时路况获知难度加大,这对于驾驶员来说是一种考验,但也会给行人的安全造成一定危险。前照灯视为汽车的“眼睛”,性能优越的前照灯能改善夜间行车安全
[嵌入式]
LabVIEW在汽车ABS制动管道动态特性测试中的应用
1 引言 LabVIEW是实验室虚拟仪器工程工作平台(Laboratory Virtual Instrument Engineering Workbench)的缩写,是美国国家仪器公司(National Instruments)在1986年推出的一种革命性的图形编程语言-G语言(Graphical Programming Language),开创了虚拟仪控的新纪元 。 LabVIEW的目标是简化程序的开发工作,让工程师和科学家能够充分利用PC机快速简洁的完成自己的工作。自1986年LabVIEW诞生至今,经过十多年的发展,LabVIEW的功能日渐丰富和强大,可以广泛应用于自动测量系统、工业过程自动化、实时监控、实验室系统仿真等各
[测试测量]
视频监控摄像机动态范围的几种测试方法
摘要: 在应用安防监控摄像机时,经常会出现明暗反差较大或逆光的场景,使得图像中明亮的区域曝光过度、较暗的区域欠曝光,而不能看清图像最亮与最暗部分。因此,各摄像机厂家竞相开发了宽动态摄像机。但如何检测其宽动态性能,是工程商等应用人员急需了解的。本文介绍摄像机动态范围的基本概念,重点介绍国外三大厂商各自对监控摄像机动态范围的具体测试方法,以供工程商等应用人员测试选用参考... 引言 由于自然光线的排列是从120000Lux到星光夜里的0.00035Lux,室内照度为100Lux,而外面风景的照度可能是10000Lux,因此当摄像机从室内看窗户外面,两者对比就是10000/100=100∶1。这个对比人眼能很容易地
[安防电子]
详解MEMS陀螺仪的工作原理
想象下你坐在一个以恒定转速旋转着的旋转木马上:你站在它的中心,开始以一个恒定的速度沿着一条直线行走,这条直线是以放射状画在地板上,从中心指向外沿(图1)。你会感觉到什么力量?这一问题的答案会有助于解释MEMS陀螺仪的工作原理。
如今,1817年发明的陀螺仪在车辆控制、航空、航天、导航、机器人及军事领域都得到了应用。MEMS陀螺仪也推动了在消费电子产品当中的应用,例如:在固定相机中的应用和交互式视频游戏中的应用。许多智能手机的应用程序也都充分利用了MEMS陀螺仪的功能。
工程师们知道,日常活动中的主导力是物理接触力,例如:摩擦力,以及在一定距离上作用的力——电磁力和重力。然而什么是惯性力、离心力,以及以科里奥利(Gaspar
[嵌入式]
ST先进图像防抖陀螺仪让下一代智能手机拍照不抖动
电子网消息,采用意法半导体的尺寸变小、性能提高、抗振功能先进的L20G20IS双轴微型MEMS 陀螺仪,更小、更薄的手机摄像头模块可以取得精确的图像稳定功能,为智能手机的新功能释放更多电路板空间。 L20G20IS是意法半导体最新的高集成度光学图像防抖陀螺仪,只有 2.0mm x 2.0mm x 0.7mm大小,比上一代2.3mm x 2.3mm的L2G2IS释放电路板空间1.29mm2,有助于缩小手机摄像头模块的尺寸,简化电路设计。无与伦比的6dB抑制比可实现出色的光学图像修正功能,彻底根除手机拍照的手抖动问题。 超薄基板通常只有0.2mm或0.3mm厚,被越来越多的设计人员用于设计摄像头与机身齐平的超薄手机。即使
[半导体设计/制造]
MEMS加速传感器和陀螺仪设计瞄准医疗领域的应用
通过基于微电子机械系统(MICRO ELECTRO MECHANICAL SYSTEM, MEMS )的加速 传感器 和陀螺仪的设计, MEMS 技术已经广泛应用于导航和游戏软件领域;但是,微型电磁式感应器技术正越来越多地应用于 医疗 领域。 MEMS 普遍应用于患者诊断器械中。这种诊断器械用于检测患者心脏的功能。医务人员通常采用的方法是通过心电图来检查患者心脏功能情况。在心电图检查过程中,医务人员会将一套电极连接在人体上,使其与皮肤表面接触。通过这种方法,我们可以测量复杂的向量心电图(VCG)。向量心电图是一种传统的方法,它可以记录患者心电P-QRS-T波的振幅和时间或者仅仅记录R波峰值的时间。这种向量心电图跟图一所示的心率
[电源管理]
陀螺仪数字可调式测试电源方案设计
陀螺电机是惯性器件陀螺仪的主要构成部分,而陀螺仪是惯性导航系统的核心元件,广泛运用于舰船导航和各种武器系统中。陀螺电机的性能好坏,将直接影响陀螺仪的性能以及整个惯导系统的导航精度,因此,对于陀螺电机供电电源的设计显得十分重要,其电压、频率稳定度等都直接影响电机的工作精度。 为了模拟实际装备中陀螺电机升压启动、降压工作的启动方式,以及在不同电源频率和电压下对陀螺电机的工作性能进行测试分析,本文在普通三相方波电源的基础上,设计了一种陀螺电机专用数字可调式测试电源,并通过测试实验进行了实用性及可靠性验证。 1 主要技术指标 1)输入电源:交流220 V±20%,50 Hz; 2)输出电源:三相方波,0~12
[电源管理]