选择正确的仪器加速RF器件测试的方法

发布者:陈晨5566最新更新时间:2006-06-12 来源: 电子工程专辑关键字:RF  二极管  三极管 手机看文章 扫描二维码
随时随地手机看文章

  对所有电子元件的生产而言测试速度都是非常重要的,在RF测试能够进行之前,必须测试这些器件的直流工作状态。对于二极管来说,这包括正向压降、反响击穿电压和结漏电流,而对于三极管,还包括不同的结击穿电压、结漏电流、集电极或漏极特性等。本文探讨了通过选择正确的测试仪器以及适当地设定来加速这些测试的方法。

  对所有的电子元件的制造商而言,测试速度都是很重要的,而对于低价格的二、三引脚元件如二、三极管来说却更是至关重要。在RF测试能够进行之前,必须测试这些器件的直流工作状态。对于二极管来说,包括正向压降、反响击穿电压和结漏电流。对于三极管,这包括不同的结击穿电压、结漏电流、集电极或漏极特性等。选择正确的测试仪器并通过适当的设定,能够极大地加速这些测试过程。

  仪器选择

  尽管可以采用各种数字万用表(DMM)、电压源和电流源来实现测试,但是与将所有这些功能包含在一个单元内的测试系统相比,将占用更多的机架空间、需要学习多种命令集,系统编程和维护也更复杂。最重要的是,触发时间变复杂了,且触发的不确定性增加了,而协调分立仪器的操作增加了总线的通讯流量,降低了测试效率。

  要解决这些问题,首先是将几个功能整合到一个仪器中。源-测量单元(SMU)将精密电压源、精密电流源、电压表、电流表整合到一个仪器中,节约了空间并简化了设备间的操作。其次是消除仪器和控制计算机之间的通讯延时。

  降低通讯开销

  随着仪器和计算机间的高速通讯成为可能,通过GPIB(IEEE-488总线)链接为测试的每个步骤提供命令和控制,使得测试系统自动化更为广泛。尽管这与以前相比有很大的进步,但还是具有明显的速度限制。首先,GPIB需要可观的通讯开销。GPIB用作实时测试的另外一个缺点是控制通常来自总线的另外一端-运行Windows操作系统的PC,Windows在通讯响应时具有显著的延时,并且不可预测,这使得在测试环境中使用PC作为唯一的控制器时,多个仪器的同步几乎是不可能的。

图1:二极管测试时的测量设备设置。

  这个问题的解决办法是使用GPIB对仪器进行预配置,然后让仪器自己执行测试。许多现代仪器拥有源存储器列表(source memory list)编程功能,允许设立和运行多达100个完整的测试序列而无须PC干预。每个测试可包含不同的仪器配置和测试条件,可包括源的配置、测量、条件跳转、数学功能和通过/失败极限测试和存储功能。某些单元可在直流或脉冲模式下,采用不同的参数和时间安排运行,使得有可能减慢较敏感的测试,或加速其它测试以优化整个测试时间进程。

  当仪器基本上自主运行时,GPIB的角色就是测试前下载测试程序以及测试后上传结果到PC,两者都不干涉实际测试。

  仪器触发

  为实现简单的电流-电压扫描(I-V),SMU输出一系列电压同时测量对应的电流。在每个电压级,SMU首先提供一个电压。电路中的电压变化将引起一个瞬态电流,因此对测试完整性而言在激励和测量之间设定一个合适的延时很关键。在不同的范围内仪器将自动调节延时来产生最佳结果。然而,给测试电路附加额外的部件,例如长电缆、开关矩阵等,这将改变电路的瞬态特性。对于高阻器件,较长的测试时间通常是必要的。在这些情况下,用户需要定义额外的延时以维持测量的完整性。

  二极管的测试

  我们的第一个例子包括测试仪器、器件传递装置(handler)和PC(图1),这里需要注意如何通过内部编程来消除大多数的GPIB通讯来加速测试。

  二极管的生产测试包括验证步骤确定待测二极管的极性,然后测试正向压降、反向击穿电压以及漏电流。

  正向压降是指在某些规定的正向电流时二极管两端的电压,通过在二极管上通过规定电流,然后在其两端测量电压来得到。反向击穿电压(VRM或VBR)是电流突然无限增加时的反向电压,这通过施加反向电流并测量二极管两端的电压来测量。读出的电压与特定的最低极限相比较以决定测试通过或失败。漏电流IR有时也称为反向饱和电流,IS是给二极管施加小于反向击穿电压的一个电压时的电流,它是通过施加一个特定的反向电压并测量产生的电流来得到的。编写程序来在源/存储器仪器的存储器位置(memory location)中设置二极管的测试,然后通过IEEE总线传来的一个触发开始执行,仪器按照存储器中的设定编程位置执行操作,无须计算机的干预。

图2:在三极管测试中一般使用两台SMU,第一台在HBT基极和发射极之间,第二台在发射极和集电极之间。

  RF功率三极管测试

  尽管有许多类型的RF三极管存在,但我们以异质结双极性三极管(HBT)为例,类似的测试可用于其它器件。由于三极管是个三端器件,通常需要使用两台SMU。图2显示两台SMU连接到器件,第一台在HBT基极和发射极之间,第二台在发射极和集电极之间。为了获取HBT的集电极曲线,基极SMU设置成输出电流并测量电压。设好第一个基极电流后,在扫描集电极电压的同事测量集电极电流。然后基极电流增加一级,再次扫描集电极电压并同时测量集电极电流。重复该过程直到获得不同基极电流情况下所有的集电极I-V曲线。

  仪器的同步

  由于希望两台仪器都被编程(避免GPIB延迟),我们希望测试设置中的所有仪器同步。开始,这并不成为问题。例如,如果几台SMU拥有同样的固件,且采用相同的测试参数对其编程,每一步的执行时间将相同。而困难来自存储器位置调用和自动距离修正(auto-ranging)步骤,这些步骤花费的时间不确定。

  在类似这种情况下需要使用一个外部的、专门的触发控制器,以保证多个仪器的测量同时发生。在测试系统采用了不同厂家的设备,或者即使来自同样厂家但触发方法不同时,这特别有用。

  过程如下所述(采用的实例参照了Keithley仪器,但类似的办法可用于其它厂家的仪器):

1.触发控制器输出一个触发信号到每台仪器。

2.从存储器调用源存储器位置。

3.使能所有仪器的源输出。

4.每台仪器按照用户定义的延时执行。

5.一旦完成延时操作每台仪器给控制器输出一个触发信号。

6。触发控制器等待每台仪器输出的触发信号(延时输出)。

7.触发控制器给每台仪器发送一个触发信号(测量输入)。

8.每台仪器开始测量操作。

9.完成测量后,每台仪器给控制器发出一个触发信号。

10.触发控制器等待每台仪器输出的触发信号(测量输出)。

11.回到步骤1开始下一测试。

图3:a:集电极-发射极击穿电压,基极开路;b:集电极-发射极击穿电压,基极短路;c:集电极关断电流,ICBO,及集电极-基极击穿电压,发射极开路。

  特定的三极管测试

  HBT通常有两个重要的击穿电压需要测量:第一个是集电极-发射极击穿电压,可在基极开路或短路时测,图3a显示基极开路(BVCEO或V (BR)CEO)下测量集电极-发射极击穿电压的设置,图3b显示基极短路(BVCES或V(BR)CES)情况下测量集电极-发射极击穿电压的设置。另一个击穿电压是集电极-基极击穿电压(BVCBO或V(BR)CBO),通常射极开路测量,图3c显示了该测试设置。在这些测量中,源-测量单元扫描HBT上的电压同时测量电流。在达到击穿电压之前,电流将保持非常恒定,达到击穿电压后,电流将突然增加。

  通常RF功率三极管要测的其他参数有集电极-发射极持续电压,BVCEO(sus)或VCE(sus),在基极-发射极之间的结上采用反向偏置时集电极-发射极的击穿电压(BVCEV或BVCEX),以及集电极开路时的发射极-基极击穿电压(BVEBO)。

  结漏电流

  描述器件关断时的漏电流也非常重要,因为在器件不工作时,漏电流将浪费功率,会缩短电池供电设备的工作时间。最常测量的漏电流参数是集电极关断电流(ICBO),在集电极和基极之间测量,发射极开路(图3c)。基极反向偏置漏电流,也称为发射极关断电流或发射极-基极关断电流(IEBO),是另一个最重要的漏电流,它是器件关断时基极的漏电流。

关键字:RF  二极管  三极管 引用地址:选择正确的仪器加速RF器件测试的方法

上一篇:安捷伦中国增资6400万元 将支持TD
下一篇:基于超声波传感器的测距系统设计

推荐阅读最新更新时间:2024-03-30 22:03

光电二极管检测电路的工作原理及设计方案
  光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。   本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路
[测试测量]
光电<font color='red'>二极管</font>检测电路的工作原理及设计方案
新款Littelfuse瞬态抑制二极管阵列可提供高出20%的雷击感应浪涌和ESD保护
电信接口的强大保护:可用于T1/E1/T3/E3、HDSL/SDSL、以太网接口 中国,北京,2013 年4月9日 - Littelfuse公司(电路保护领域的全球领先企业)现已推出SRDA05系列SPA®瞬态抑制二极管阵列。 SRDA05系列专门用于保护电信数据线路不受静电放电(ESD)和高浪涌事故的危害,可提供比市场上同类设备高20%的功率和浪涌处理能力。通过将低电容控向二极管与一个附加的齐纳二极管整合在一起,SRDA05可提供比行业标准更高的电气威胁设计余量,同时在不降低性能的前提下提高ESD保护性能。 此类设备的典型应用包括第三级(IC侧)保护电信接口,例如T1/E1/T3/E3数据线、xDSL接口、RS-232/RS
[电源管理]
手机射频测试总结(四)——CMMB 部分(补充)
对于CMMB问题作下补充,前文说MF_ID_0用于传输控制信息为控制帧,而其他的帧为业务帧。业务帧根据不同的调制方式及编码方式的配置,可以由2-9个复用帧来传输一个电视节目。这些业务帧又分为若干子帧。这些复用子帧为业务传输实体,承载音频视频及数据。根据承载的信息量不同,子帧数也是不同的,可以从1-15个。对于复用帧及复用子帧的组成,也是分为很多段的,比如复用帧TS0分为复用帧头,控制信息表,TS1-39分别复用帧头,复用子帧表。复用子帧又分别子帧头,视频段,音频段,数据段,而两种帧头还包含更多的数据段,如果想了解更多的,可以找一些参考资料来看,我就不把这些都搬上来了。 此外控制帧TS0的参数配置是固定的,调制方式为BPSK,RS(2
[测试测量]
银河电子选择飞思卡尔的硅调谐器
飞思卡尔半导体的硅调谐器MC44S803为中国数字电视机顶盒升级推波助澜   2007年7月6日 —中国著名的数字电视机顶盒设备生产商之一—江苏银河电子股份有限公司(银河电子)今天宣布,选择飞思卡尔的MC44S803硅调谐器(Silicon Tuner)应用于其数字电视机顶盒。随着中国由模拟向数字电视的升级,数字电视机顶盒推广和普及,作为机顶盒前端的射频硅调谐器技术为机顶盒的升级设计和生产提供了可靠保证,飞思卡尔半导体面向小管脚应用的高性能和低功率的硅调谐器成为众多设计和生产厂家的理想之选。   银河电子在数字电视机机顶盒设计和生产创新方面处于领先地位。公司率先在国内开发生产符合DVB标准的系列化数字机顶盒产品,产品涵盖了数
[家用电子]
罗姆开发出业界顶级的超低VF小型肖特基势垒二极管
日本知名半导体制造商罗姆(总部位于日本京都)面向智能手机等便携设备开发出业界顶级的低VF小型肖特基势垒二极管“RBE系列”。 本产品已经以月产500万个的规模开始量产,随着客户采用的增加,从2012年9月份开始将产能扩充为每月1000万个。 此次,产品阵容中新增了更加小型的VML2封装(1.0×0.6mm)。通过这些产品,将非常有助于便携设备节省空间。 生产基地位于ROHM Integrated Systems (Thailand) Co., Ltd.(泰国)、ROHM Electronics Philippines, Inc.(菲律宾)、ROHM Semiconductor (China) Co., Ltd.(天津)、RO
[电源管理]
罗姆开发出业界顶级的超低VF小型肖特基势垒<font color='red'>二极管</font>
DSG815射频信号源的功能特性及产品特点分析
一、产品描述 DSG800在同级别的经济型射频信号源中,性能出众,频率范围从 9 kHz 到 1.5 GHz 或 3 GHz;最大输出功率典型值可达 +20dBm;相位噪声典型值高达-105dBc/Hz。DSG800同时具备完备的频率和功率扫描功能,以及AM/FM/ØM模拟调制和强大的脉冲调制功能。与同类产品相比,DSG800桌面占用面积最小,重量轻,具有出众的便携性,是教育实验室、工业生产线、开发和研究等应用的完美选择。 二、产品特点 1、优秀的相位噪声指标,高信号纯净度,相位噪声典型值《-105dBc/Hz@20kHz,媲美国外同类产品;选配高稳时钟参考后可以得到更出众的近旁相噪指标; 2、杰出的宽频段的高功率输出,最大输
[测试测量]
GPS技术基础及GPS接收器测试
概况 从波音747客机的导航操作、汽车驾驶每天都会使用的GPS导航系统,到寻宝者要找到深藏于森林某处的宝藏,GPS技术已经迅速融入于多种应用中。 正当创新技术不断提升GPS接收器效能的同时,相关的技术特性亦越来越完整。时至今日,软件甚至可建立GPS波形,以精确仿真实际的信号。除此之外,仪器总线技术亦不断提升,目前即可透过PXI仪控功能,以记录并播放实时的GPS信号。 介绍 由于GPS技术已于一般商用市场逐渐普及,因此多项设计均着眼于提升相关特性,如: 1)降低耗电量 2)可寻找微弱的卫星信号 3)较快的撷取次数 4)更精确的定位功能 透过此应用说明,将可了解进行多项GPS接收器测量的方法:灵敏度、噪声系数、定位精确度、首次定位时间
[测试测量]
GPS技术基础及GPS接收器测试
蓝牙联姻UWB迈出重要一步,集成芯片将于07年面市
蓝牙特别兴趣团体(Bluetooth Special Interest Group)日前宣布,已选择WiMedia Alliance的MB-OFDM UWB(多频带OFDM超宽带)技术,以结合现有蓝牙(Bluetooth)无线技术,为实现全球公认、拥有高速/高数据传输率的蓝牙无线技术踏出重要一步。 新版本的Bluetooth技术将能满足移动装置的同步功能及传送大量数据所需的高速传输需求,并能支持移动装置、多媒体投影机及电视等硬件的高影音质素应用。此外,蓝牙技术将可继续按鼠标、键盘及单声道耳筒等低耗电量周边的应用需要,选择最适当的无线射频,为两种不同的需求提供最佳的方案。 Bluetooth SIG执行董事Michael Fol
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved