一种加快RFIC发射机设计速度的创新方法

发布者:真瓷堂最新更新时间:2006-09-26 来源: 电子设计技术关键字:增益  调谐  模拟  阻抗 手机看文章 扫描二维码
随时随地手机看文章

   对RFIC收发机设计来说,您需要大量的不同模拟技术和功能,如无线局域网(WLAN)或IEEE 802.11b中集成RFIC收发机发射部分应用的频域(谐波平衡)、混合频域和时域(电路包络)、电磁和混合数字域、频域和时域(无线测试台)。这些模拟技术速度快、效率高,对仍然使用传统时域模拟器的RFIC设计人员来说,他们仍应非常关注这些模拟技术。

  图1中所示的直接转换发射机由带预定标器的VCO组成,它生成差分模式的正交本振(LO)信号,驱动I和Q混频器。与相对较低的功放器一样,可调谐模拟基带滤波器和放大器已经包括在芯片上。


  对这一设计流程,假设系统设计人员已经使用行为模型完成顶级设计,并已经把每个模块的初步技术数据提交给RFIC设计人员。RFIC设计人员可能已经有一个设计方案,其可能位于不同的制造流程中,在不同频率范围上运行,输出的功率过小或过高,或效率不够高等。因此,我们将假设设计人员先把设计中的每个模块转换成目标制造流程。必需调节每个模块的设计 (主要是偏置电压、电流和器件尺寸),以获得基本功能。然后可能需要进一步调查和设计,保证其达到要求的性能水平,并"探索设计空间",看能不能以更低的成本(功耗、区域等)实现更好的性能。

  为改善效率,在初步设计流程中使用的EDA工具应使得设计人员能够简便地扫描、调谐或优化直接影响电路重要响应的参数,这一点非常重要。此外,工具还应使得设计人员能够清楚灵活地查看模拟结果,并能够获得信息,清楚地存档结果。

  在模块由少量正弦信号驱动时,可以从频域频谱中直接计算发射机电路模块感兴趣的绝大部分响应。因此最好使用频域模拟工具,其前提是它们能够处理电路的复杂性,我们将在本文中演示频域工具能够解算复杂程度超出想象的电路。频域模拟器具有额外的优势,它们可以直接处理频域模型和测得的数据,而不需生成某些集总等效电路。

  为在现代通信系统中模拟复杂的被调制信号(如WLAN、WCDMA),您需要的不仅仅是频域模拟。这是因为频域模拟太过于针对稳态响应,而复杂的被调制信号会随着时间随机变化。我们将介绍模拟这些被调制信号的多种不同方式。

在VCO设计中应用频域模拟

  VCO设计的两个初始重要特点决定着可调谐谐振器的谐振频率范围及电路是否振荡。您可以从谐振电路开始(包括变容二极管和代替线圈的理想电感器),运行频域S参数模拟,并作为参数扫描谐调电路,将提供谐振器调谐范围。而调节电感值和/或变容二极管的尺寸应使您能够设置谐振器的调谐范围。一旦谐振器在希望的调谐范围内工作,应使用额定电感相同的平面螺线管代替理想的电感器 (Helic的VeloceRF为合成希望值的螺旋电感器提供了工具) 。可以使用平面电磁解算工具,模拟螺旋电感器,生成准确的可以用于所有VCO后续模拟中的频域模型。图2是测试谐振器调谐范围的模拟设置。图3是谐振器频响和调谐范围,其中作为参数扫描调谐电压。

  如果VCO不振荡会怎么样呢?您怎样使用工具、确定原因及怎样解决问题?一半的VCO设计与谐振器有关,而另一半则与有源电路有关,有源电路在某个频率范围内生成负电阻,其足够大,可以克服谐振器中的损耗。如果模拟器表明VCO没有振荡,您可以去掉谐振器,换上测试信号,相对于频率和/ 或幅度扫描信号,使用它确定给谐振器带来的阻抗。如果这个阻抗的实数部分不为负,或者幅度太小,那么可以试着调节偏置电流和器件尺寸等部分,直到满足振荡条件。

  VCO一旦运行,检验其是否在连接到预定标器上时还能在希望的频率范围内不断振荡就非常重要。图4表明在由VCO驱动时相对于调谐电压的预定标器的输出。

  检验VCO/预定标器组合在温度和制造流程变化的情况下的工作状况。为执行这些模拟,您需要一个工具,简便地解算VCO和预定标器相对于扫描参数的运行情况。频域模拟器(在解算预定标器时给定生成瞬变的初始推测)特别适合这类扫描模拟,您希望获得电路相对于某个参数的稳态响应。这是因为在运行参数扫描时,频域模拟器对扫描参数值n-1使用电路的解算结果,作为使用扫描参数值n解算电路的初始推测。只要电路的响应相对于扫描参数变化得不是太快,那么可以迅速简便地找到解算结果。

对混频器设计应用频域模拟

  在直接转换系统中,混频器通常用来把信号从RF转换到基带(在接收机中)或从基带转换到RF (在发射机中)。可以从输入和输出信号的稳态频域频谱中,直接计算出混频器技术数据,如变频增益和IP3 (三阶截获点)。如果使用纯时域模拟器(如 SPICE),那么输出频率与输入频率之比越大(这个比率对直接转换系统会特别大,因为基带靠近DC),要求的模拟时间越长。这是因为在使用时域模拟器时,必须使用足够小的时间步进,对RF及其谐波取样,并使用足够长的结束时间,捕获整个周期中频率最低的信号。频域模拟器没有这个频率比问题,因为要求的模拟时间不依赖信号的频率。

  在检定混频器及设计中的其它模块以及优化性能时,最好能够扫描和优化参数。通过频域模拟,可以相对于任意扫描参数绘制想改善的性能特性图,也可以直接进行优化。例如,您很容易会看到相对于LO驱动幅度的电压转换增益,并确定预定标器的输出需要有多大。您可以很容易看到相对于输入信号幅度的变频增益,表明在压缩变得不能接受前基带信号可以有多大。图5说明了在扫描器件之一的选通宽度(其决定着偏置电流)上电压转换增益与三阶截获点之间的折衷。

  通过这些参数扫描,设计人员应大体了解哪些参数对电压增益及三阶截获的影响最大。但是,如果可以迅速执行这些参数扫描(在本例中,扫描4个不同值的FET宽度及计算转换增益和IP3只需75秒),那么可以简便地确定哪些参数有影响,哪些参数没有影响。

  优化允许在试图改善不同的性能特性时同时改变多个参数。在本例中,我们改变了几个不同的器件的FET宽度,使变频增益和IP3同时达到最大。为测试优化器的强健程度,人为设置初始参数值,提供较差的性能。在不到25分钟的时间内,优化器使IP3点改善了大约14 dB,使电压转换增益改善了3 dB以上。

对WLAN信号失真进行模拟

  在传统上,人们一直使用正弦波来检定和规定混频器和其它模块的指标。但是,在处理复杂的被调制信号时,正弦曲线技术数据(一般是增益压缩和IP3)可能并不能精确预测每个模块将引入的性能劣化。执行这些模拟要求:
   数字处理功能,生成信号;
  能够把其转换成晶体管级模拟器能够处理的随时间变化的信号;
   频域和时域混合模拟器,有效处理高频RF信号及变化速度相对较低的调制信号;
  能够迅速检定电路行为,建立模拟效率远远高于晶体管级电路的模型;
   编制好的模板,显示EVM、频谱、峰值和均值功率、星座图等结果。

  模拟WLAN信号使用的工具基于UC Berkeley提供的Ptolemy模拟器 (数字处理)、协同模拟(同时进行数字处理和晶体管级或行为级模拟)、电路包络(用于混合频域和时域模拟)、自动检验建模(用来从自动扫描功率频域模拟中快速生成模型)及数据显示。这些工具相结合,构成了“无线测试台”,因此您不必精通所有底层工具和技术,就可以获得有用的结果。图6显示了混频器的输出频谱,它满足了WLAN频谱模板要求。

对基带链路应用频域和WTB模拟

  基带模拟电路在传统上一直是使用时域模拟器模拟的,如SPICE。但没有任何理由不能对其应用频域模拟。还可以在基带电路上在频域中运行相同类型的增益和IP3 模拟,但在没有频率转换时除外。

  我们试图检定基带链路(Gm-C 滤波器(参考文献1)和可变增益放大器)的非线性度。但是,由于滤波器结构,它没有传统的三阶非线性度(IP3点)。可以从双音扫描幅度模拟及得到的基础和三阶互调失真音调随输入信号幅度变化图中看出这一点,如图7所示。


  互调失真音调没有以3:1的斜率提高,表明不能计算IP3点。在这种情况下,最好使用无线测试台模拟,查看基带链路使基带信号失真的程度。使用这种方法表明,基带链路引入的EVM与滤波器的带宽强烈相关,如果只是太窄的几MHz,EVM会迅速劣化到不能接受的水平(从15%到25 %)。

模拟功放器

  在此设计中,功放器与收发机其余部分集成起来,用于输出功率相对较低的WLAN (802.11b)应用。

  参数扫描和快速频域模拟可以对有源器件进行高效的负荷拉动模拟和源拉动模拟,其应该表明最优的负荷拉动阻抗和源拉动阻抗(并在需要时表明谐波阻抗),以使传送的功率和/或功率加效率达到最大。图8表明了功放器输出级中使用的其中一个FET的负荷拉动模拟结果。


 
 一旦知道了最优阻抗,实现最优阻抗最可能要求的是螺旋电感器。如前所述,平面螺旋结构的电磁模拟会产生在频域中可以非常高效地模拟的、异常精确的模型。3dB增益压缩点以上的单音调扫描功率模拟只需大约5秒的时间。IP3点的双音调扫描功率模拟只需要大约30秒的时间。

  下一步是创建放大器的提取视图,它使用Cadence AssuraRF,包括250,000多个寄生单元 (包括754个非线性单元)。在使用上面的谐波平衡频域模拟器时,在1.5 dB增益压缩点以上对这个提取视图进行单音调功率扫描模拟需要大约2小时38分钟的时间,表明谐波平衡能够处理非常大的电路。图9说明了提取视图模拟结果。

  我们在放大器上进行了无线测试台模拟(要求大约40秒) ,而不是提取视图,确定可以提供的最大输入功率,同时仍满足输出频谱模板要求。

模拟整个发射机

  最终测试是为了检验整个发射机设计的性能,这里介绍的测试使用了在晶体管级建模的所有模块。

  第一个模拟是在I和Q基带链路上的输入上低速扫描基带I和Q信号幅度。在理想条件下,PA输出上的信号幅度应线性追踪I和Q输入组合创建的矢量幅度。任何幅度线性偏差及输出信号的任何相位变化都是失真。可以在发射机不同位置检查电压增益及相位变化,查看失真是在哪儿引入的。也可以确知基带信号幅度低于输出相位和幅度失真变得不可接受得大时的水平。这个模拟的规模很大,示意图中有近3500个器件,其中1500多个器件是非线性的,但在6分钟零8秒一次性模拟以建立初始推测之后,它只需要8分钟零20秒的时间。图10显示了模拟结果,表明如果从基带I和Q信号中提供的矢量幅度小于约0.25,那么增益压缩和相位误差要相当小。

  还可以同时扫描I和Q基带信号的幅度和相位,以便放大器输出信号得到的幅度和相位清除螺旋。图11显示了基带输入信号,左边是基带链输出上的螺旋(标有 “IF”,但其没有进行频率转换),右边是功放器输出上的螺旋。注意,螺旋已经显示在作出任何RF处理前进行压缩。这为测试多个基带I和Q组合与RF输出信号的对映情况提供了一条快速途径。要求的模拟时间随着创建的螺旋的分辨率变化,但图12所示的粗螺旋只要求大约10分钟的时间。

  我们进行双边带调制测试,其中I和Q输入信号都是1 MHz的同相正弦曲线。VCO设成接近5 GHz,提供接近2.5 GHz的LO。因此,PA的输出有双边带频谱,其中心是LO频率。可以扫描基带正弦曲线的幅度,显示互调失真相应提高。这一模拟要求1小时19分钟,略长于上面介绍的比较简单的调制精度测试。模拟结果如图13所示。

 

  作为晶体管级发射机的最终测试,我们使用Ptolemy生成时域基带I和Q WLAN信号。这些信号从数据集读入发射机模拟,用来驱动I和Q 基带链路。这一模拟对666个符号要求接近10小时的时间。尽管这一时间很长,但它可以在晚上完成。从这里,我们可以看到输出轨道图、功率及是否满足频谱模板,如图14所示。

参考文献:
Y.P. Tsividis和J.O. Voorman, “集成式连续时间滤波器, 原理, 设计和应用,” IEEE Press, 1993。

关键字:增益  调谐  模拟  阻抗 引用地址:一种加快RFIC发射机设计速度的创新方法

上一篇:基于U2270B的射频识别系统天线设计
下一篇:基于软件无线电的发信机原理及实现

推荐阅读最新更新时间:2024-05-13 18:14

ADI推出集成自动增益控制的宽带正交调制器
ADI 最新推出业界首款高性能宽带 I/Q 正交调制器 —— ADL5386 ,在紧凑型 6 mm × 6 mm LFCSP 封装内集成了自动增益控制( AGC )电路。 ADI 公司的 ADL5386 提供了高性能与无与伦比的高集成度的独特组合,适用于宽带无线接入系统、微波无线电链路、电缆调制解调器终端系统以及手机基础设施设备中的低 IF (中频)与 RF (射频)发射机。 ADL5386 的工作频率范围为 50 MHz ~ 2200 MHz ,支持下一代通信基础设施设备的高数据速率复合调制。 ADL5386 功能完整,集成了 25 dB 动态范围输出功率检波器及可变电压衰减器( VVA ),它们
[安防电子]
ADI推出集成自动<font color='red'>增益</font>控制的宽带正交调制器
模拟有源滤波器MAX275的原理及应用
1 概述 MAX275是美国MAXIM公司生产的通用型有源滤波器。它内含两个独立的二阶有源滤波电路,可分别同时进行低通和带通滤波,也可通过级联实现四阶有源滤波,中心频率/截止频率可达300kHz。 MAX275无需时钟电路,因此与开关电容滤波器相比,其噪声更低,动态特性更好,能广泛应用于各种精密测试设备、通信设备、医疗仪器和数据采集系统。 图1 2 MAX275的结构原理 MAX275内部的二阶有源滤波器如图1所示。由图可见,该电路采用4运放设计,运放、内部电容以及外接电阻构成级联积分电路,可同时提供低通和带通滤波输出。电路内部最后一级运放的输入端接有一个5kΩ电阻,其作用是避免外部寄生电容对内部积分电容产生影响。 3 M
[模拟电子]
信号完整性计算和器件的特性阻抗研究
在您努力想要稳定板上的各种信号时,信号完整性问题会带来一些麻烦。IBIS 模型是解决这些问题的一种简单方法。您可以利用 IBIS 模型提取出一些重要的变量,用于进行信号完整性计算和寻找 PCB 设计的解决方案。您从 IBIS 模型提取的各种值是信号完整性设计计算不可或缺的组成部分。   当您在您的系统中处理传输线路匹配问题时,您需要了解集成电路和PCB线路的电阻抗和特性。图 1 显示了一条单端传输线路的结构图。      图 1 连接发射器、传输线路和接收器组件的单端传输线路   就传输线路而言,我们可以从 IC IBIS 模型提取IC的发射器输出阻抗 (ZT, Ω)和接收器输入阻抗(ZR, Ω)。许多时候,IC
[电源管理]
信号完整性计算和器件的特性<font color='red'>阻抗</font>研究
模拟示波器的使用方法
模拟示波器的使用方法 模拟型示波器显示波形及波形稳定的原理 显示波形原理:   当被测信号接适应症示波器Y轴即示波管的Y轴偏转板,例如正弦电压,若X轴不加交 变信号,从电子枪射出的电子束在垂直方向随时间作正弦式上下往返运动,一般由于频率较高,看到的实际就是一条直线。同理若只在X轴加有交变信号,看到的就只是一条水平 亮线。只要是示波器,机内都有一个锯齿波信号电压发生器,它的作用是专门可提供加在X轴,随着锯齿波电压从低至高成正比变化,使得电子束从左至右在水平方匀运动,然后随信号的变化立刻回到左边,开始另一次从左至右的匀速运动,所以称为扫描运动,相应的称为扫描信号,这相当于在示波器置X为时间轴,在它的作用下,Y轴原来直线的正弦信
[模拟电子]
模拟示波器工作原理及功能介绍
示波表又可称为手持示波器,有携带方便、操作简单等特点。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波表功能是什么,示波表原理介绍如下。 示波表 示波表又可称为手持示波器,有携带方便、操作简单等特点。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等。 功能介绍 手持式数字示波表集数字存储示波器、数字万用表、数字频率计三者功能于一体,采用电池供电,图形液晶显示,是电子测量领域里一类新型的实用仪器。本设计采用嵌入式设计技术,把微控制器、A/D转
[测试测量]
<font color='red'>模拟</font>示波器工作原理及功能介绍
手机发展放缓导致模拟IC增长下降
  尽管移动手机市场发展大大减速,但iSuppli预测2007年广泛应用于手机的模拟集成电路的出货仍将保持两位数增长。   包括移动电话在内的无线通信仍将是模拟IC销售的主要推动力,它占据市场营收的1/3。虽然相比2006年移动电话增速下降了一半,但是无线手机10%的出货增长仍会有助于推动模拟增速高于半导体产业整体水平。模拟IC的销售增长也得益于PC和网络设备的强劲增长。   2007年全球模拟IC营收预计达到475亿美元,相比2006年增长10.1%。模拟IC市场可以分成2个部分:标准线性IC和专用模拟IC。大约25%的标准线性IC营收和大约38%的专用模拟IC营收来自无线通信。   尽管用于移动电话的专用模拟IC单位出货
[模拟电子]
汽车电子行业需要一套数字模拟高整合车联网终端方案
    在国际标准化组织(例如ITS)及国家政府的支持下,欧、美、亚许多国家启动了很多车联网研发和试点项目。这些项目从不同角度开发车联网:智能交通处理、先进安全、跟踪信息、提高定位精度、移动位置服务、先进桥路收费、按次/行为付费保险系统,而这涵盖了车联网终端电子的主要功能和服务。“所有这些功能都离不开各种形式的集成电路,同时还会持续拉动半导体市场增长。”意法半导体大中华及南亚区汽车产品部市场应用总监EdoardoMerli指出。   为适应车联网需求,车载电子需要“全活”的主芯片和外围器件。   整合提速带来技术挑战   对于车联网而言,因为功能繁多,芯片的整合显得更加必要。   为适应车联网需求,车载电子需要
[汽车电子]
MSC1211在高精度智能变送器开发中的应用
引言 在工业控制过程中,经常需要对一些参数进行测量,而一般传感器的输出信号较弱,不适合作远距离传输。为了减小干扰,通常采用4mA~20mA电流输出的双绞线变送器。信号模拟处理的变送器,由于电路的复杂性的限制,非线性补偿效果不理想,很难在全温度范围内实现温度补偿,因此达不到较高的精度要求。随着低功耗高精度单片机﹑ΣΔA/D和ΣΔD/A转换器的日益普及,为高精度的智能变送器的设计提供了技术途径。本文介绍了利用美国德州仪器公司(Texas Instrument)新近推出了一种功能很强的低功耗单片机制作高精度智能变送器的硬件构成及工作原理。 系统硬件构成及工作过程 图1 智能变送器硬件组成图 智能变送器的硬件系统构成如图1所
[模拟电子]
小广播
最新应用文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved